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1
I N T R O D U C T I O N

One of the most challenging problems persisting since 20th century is the quantum the-

ory of gravity. It is expected that it will also unify the four fundamental forces: gravitation,

electromagnetic, strong and weak forces. As, quantum mechanics is formulated in terms of

operators acting on some Hilbert space realizing operator algebras and gravity, on the other

hand, is the theory which describes the geometry and dynamics of the space-time manifold,

it is quite conceivable that a future theory of quantum gravity would deal with some gen-

eralized geometry containing aspects from both. Non-commutative geometry [1] is such a

generalized geometry and is indeed a very promising candidate for a future formulation of

quantum gravity.

1.1 non-commutative/quantized space-time

The idea of quantization of space-time was proposed by Heisenberg in 1930’s, not much later

than the quantization of phase space, to cure the ultraviolet divergences of quantum field

theory. However, the first paper [2] on Lorentz invariant quantized space-time was given

by Snyder in 1947. In his second paper [3], Snyder obtained the equation of motion for the

electromagnetic field on the Lorentz invaraint quantized space-time.

But it was Bronstein [4] before Snyder who observed that consideration of both quantum

mechanics and Einstein’s general relativity imposes an upper bound on the density of test

body while making a precise measurement of gravitational field and hence a fundamental

length scale below which the notion of space-time point i.e. event doesn’t make sense. But

the success of renormalization techniques rendered the ideas of quantized space-time dor-

mant for many years. However, in 1994 [5, 6], Doplicher et.al independently refreshed the

idea of quantizing space-time by proposing a Poincare covariant spacetime uncertainty rela-

tions at Planck length scales (lp =
√

h̄G
c3 ≈ 1.616× 10−33 cm), where h̄ = 6.582× 10−16 eV.s is

the reduced Planck constant, G = 6.674× 10−8 cm3g−1s−2 is the gravitational constant and

c = 2.997× 1010 cm.s−1 is the speed of light in vacuum. This was suggested by quantum

mechanics and Einstein’s theory of gravity as quantum measurement of a spacetime event

with accuracy ∼ lp need a probing particle with Compton wavelength ≤ lp. This means par-

ticle with energy Elp ≥ 2πh̄c
lp
≈ 2.557× 1028 eV which will generate so strong a gravitational

1



1.1 non-commutative/quantized space-time 2

field with the Schwarzschild radius Rs =
2GElp

c4 ≈ 4.215 × 10−33 cm > lp so that a black

hole will form and no information will come out. Thus, the idea of quantized space-time is

perhaps the main feature of the quantum theory of gravity. Moreover, the non-commutative

space-time was found to emerge in string theory [7] at certain low energy limits.

Of the many choices of non-commutativity of the space-time, the simplest one is the canon-

ical one which is the one postulated in [5] and obtained in [7]:

[x̂µ, x̂ν] = iΘµν ; µ, ν = 0, 1, 2, 3. (1.1)

Such spacetime (1.1) is referred to as the non-commutative Moyal space-time R4
∗ [8] where

Θµν is a constant anti-symmetric matrix; and does not transform like a rank 2 anti-symmetric

tensor under Lorentz transformation. Rather, the entries are regarded as new constants of

Nature like h̄, c, G, etc [9].

Such type of non-commutativity (1.1) appears in condensed-matter theory also. The classic

example being the Landau problem [10] where the projected coordinates of the electrons

(moving in a plane subjected to an external transverse magnetic field) on the lowest Landau

level do not commute. Thus, the theory of electrons in a strong magnetic field can be thought

as a non-commutative field theory and hence it is believed that the theory of quantum Hall

effect [11] can also be understood in the framework of non-commutative field theory.

1.1.1 Non-commutative field theory employing star products

The construction of non-commutative field theory is inspired by the phase space formula-

tion of quantum mechanics (deformation quantization) [12] where the quantization of the

phase space can be understood as a deformation of the algebra of observables with a new

non-commutative product rule, called star-product [13]. This is also called the Wigner-Weyl

quantization1 [14, 15] where there is one-to-one correspondence, called the Wigner-Weyl cor-

respondence, between quantum operators and classical functions of phase space variables

(for a review, one can see [12]).

One then consider the space-time on which we want to formulate quantum field theory

to be the same flat Euclidean space-time R4 but take the algebra of fields A?(R4) equipped

with the deformed product rule implemented by the star product which can be defined as

f ? g = m?( f ⊗ g) := m0 ◦ F−1( f ⊗ g), (1.2)

where m? is the non-commutative multiplication map called the star product, m? : A? ⊗
A? → A? and m0 is the commutative pointwise multiplication map, m0 : A0⊗A0 → A0, i.e.,

1 If f (x, y) is a function defined on R2, then the Weyl operator Ŵ( f ) of f is given by

Ŵ( f ) =
1

(2π)2

∫
dxdy

∫
dkxdky f (x, y)e−i(kx x+kyy) ei(kx x̂+ky ŷ) ; [x̂, ŷ] = iθ.

The inverse of Weyl map gives the Wigner function and Moyal star product appears as Ŵ( f ? g) = Ŵ( f )Ŵ(g).
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m0( f ⊗ g) 7→ f g, while F is the invertible, Drinfel’d twist element [16]. The non-commutative

field theories can then be constructed in complete analogy with the corresponding commu-

tative theories except using star-product for multiplication between fields [8, 17].

Note that the choice of star product is not unique. Both Moyal [18] and Voros [19] ?-

products give the same canonical non-commutative space-time:

xµ ? xν − xν ? xµ = iΘµν. (1.3)

The Moyal star product is given by

( f ? g)(x) = f (x)e
i
2 Θµν←−∂ µ

−→
∂ ν g(x);

←−
∂ µ acts on left , f (x) and

−→
∂ µ acts on right, g(x) , (1.4)

for which the corresponding twist element is

F = e−
i
2 Θµν∂µ⊗∂ν . (1.5)

On the other hand, Voros star product, which can be defined mainly in an even dimen-

sional spaces, has a slightly different structure and will be displayed soon. The Moyal star

product (1.4) first appeared as the deformed product of two classical functions of phase

space variables which corresponds to the product of the symmetrically ordered quantum

operators.

An astonishing feature of non-commutative quantum field theory is that it doesn’t com-

pletely cures the problems associated with the UV divergences rather it shows a mixing of

high energy (UV) and low energy (IR) scales, the so-called UV/IR mixing [20, 21] which does

not have a commutative counterpart. Also, the Lagrangian of the non-commutative field the-

ory is not Lorentz invariant. This stems from the fact that the basic non-commutative algebra

(1.1) is not covariant under the usual relativistic (Lorentz) symmetries of space-time because

of the constant matrix Θµν. Equivalently, we can consider the transformation property of

scalar field φ(x) under homogeneous Lorentz transformation [22]:

xµ → x′µ = Λµ
ν xν =⇒ φ→ φΛ(x) = U(Λ)φ(x) = φ(Λ−1x), (1.6)

where U(Λ) is the unitary representation of this Lorentz transformation on the space of

scalar fields. Then, the automorphism symmetry for a pair of arbitrary scalar fields φ1(x)

and φ2(x) under the above transformation (1.6) is found to be broken:

(φΛ
1 ?M φΛ

2 )(x) 6= (φ1 ?M φ2)
Λ(x). (1.7)

However, the automorphism symmetry can be recovered by deforming the co-product ∆0(Λ)→
∆?(Λ) = F∆0(Λ)F−1 (see appendix A), with

∆0(Λ) = U(Λ)⊗U(Λ), (1.8)
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being the undeformed co-product and here the twist element can be written as F = e
i
2 ΘµνPµ⊗Pν

where Pµ are the generators of translations, so that

m?

(
∆?(Λ)(φ1 ⊗ φ2)

)
= U(Λ) ◦

(
m?(φ1 ⊗ φ2)

)
. (1.9)

The resulting algebra of scalar fields is the twisted Poincare algebra [23, 24] with the twisted

co-products:

∆?(Pµ) = ∆0(Pµ) ≡ Pµ ⊗ I + I⊗ Pµ (1.10)

∆?(Mµν) = Mµν ⊗ I + I⊗Mµν −
1
2

Θγδ
[
(ηγµPν − ηγνPµ)⊗ Pδ + Pγ ⊗ (ηδµPν − ηδνPµ)

]
,

where Mµν are the Lorentz generators and ηµν is the flat space-time metric. Thus, the symme-

tries of non-commutative space-time cannot be captured by group structure but by quantum

group [25] which is not a group by itself but a twisted Hopf algebra (see appendix A).

The twisting of the co-product leads to the notion of twisted statistics in non-commutative

physics [26]. Further, it was shown in [27] that the twisted fermions violate the Pauli exclu-

sion principle by computing the two-particle correlation function, employing the Moyal star

product, for a canonical ensemble of free gas.

As mentioned above, one can also define another star product, called the Voros star prod-

uct [19] which comes from the weighted Weyl map2 [30–32]. This associates product of

normal ordered quantum operators to the deformed product(Voros star product) of classical

functions on the phase space variables. The inverse of weighted Weyl map is Wigner’s dis-

tribution function, smoothened with a gaussian function. It is non-negative in all quantum

states [33] and is as wide or wider than the minimum uncertainty wave packet [34].

In order to compare the Moyal and Voros ?-products, let us consider 2+ 1 non-commutative

space-time for which Θ0α = 0, α = 1, 2 and since Θ00 = 0 identically we can write

Θαβ = θ εαβ, where ε12 = 1 = −ε21 and θ is a constant. Here, θ is the non-commutative

or deformation parameter of dimension length squared. On such space-time, one can de-

fine two deformed algebra of functions viz AM
? and AV

? with the following twist elements

respectively for the non-commutative multiplication map (1.2),

FM = e
i
2 θ(∂1⊗∂2−∂2⊗∂1) and FV = e

θ
2 (∂1⊗∂1+∂2⊗∂2)FM = FMe

θ
2 (∂1⊗∂1+∂2⊗∂2). (1.11)

Thus, the Voros star product between two arbitrary functions can be written as

f ?V g = f e
i
2

(
Θαβ←−∂ α

−→
∂ β−iθδαβ←−∂ α

−→
∂ β

)
g = f e

i
2 Θαβ

V
←−
∂ α
−→
∂ β g = f e

←−
∂ z̄
−→
∂ z g , (1.12)

2 For function φ(z, z̄) on complex plane C, its weighted Weyl map is given by [28, 29]

ŴV(φ) =
1

(2π)2

∫
dzdz̄

∫
dηdη̄φ(z, z̄)e−ηz̄+η̄zeθη â†

e−θη̄ â ; [â, â†] = θ .

The inverse of this map is represented by φ(z, z̄) = 〈z|ŴV(φ)|z〉 where â|z〉 = z|z〉 and the Voros star product
appears as ŴV(φ ?V ψ) = ŴV(φ)ŴV(ψ) such that φ ?V ψ = 〈z|ŴV(φ)ŴV(ψ)|z〉.



1.1 non-commutative/quantized space-time 5

where, Θαβ
V = θεαβ − iθδαβ is the non-commutative Voros matrix ; (1.13)

and z =
1√
2θ

(x1 + ix2) , z̄ =
1√
2θ

(x1 − ix2) (1.14)

are the dimensionless complex variables.

These two deformed algebras AM
? and AV

? are connected [35–37] by an non-invertible

linear map T : AM
? → AV

? [38] such that

T( f ?M g)(x) = [(T f ) ?V (Tg)](x) and T( f ∗) = (T f )∗ where T = e
θ
4∇2

. (1.15)

It was shown in [38] that this T-map is not invertible on the space of square-integrable or

even Schwartz class functions on R2. This was shown by considering a Gaussian function

f (x) = e−
x2

α2 which yields, on the action of T−1,

T−1 f (x) =
α2

4π

∫
d2 p e−

1
4 (α

2−θ)~p2+i~p.~x. (1.16)

Clearly, for α <
√

θ, the above integral does not exist and hence T−1 exists only for a class

of Schwartz functions which are smooth on the small length scales (.
√

θ). Thus, different

deformed algebras AM
? and AV

? define inequivalent representations of a quantum system

which explain the inequivalence results between non-commutative field theories employing

Moyal and Voros ?-products obtained in [36, 37]. Moreover, there are infinitely many star

products [39] for different non-commutative space-times and so one has to be very careful

about the choice of the star product.

Let us now promote the position coordinates of a non-commutative space-time to the

level of operators but retaining time coordinate as c-number and consider only the non-

commutative space at some time t. In other words, we put Θ0i = 0 for simplicity and not

because of any claimed violation of unitarity [40] in the case Θ0i 6= 0. In fact, it has been

proved quite conclusively in [41] that there is no violation even when Θ0i 6= 0.

1.1.2 Non-commutative quantum mechanics: Operator method

One can define non-commutative space in many ways [42] and some spaces which are rela-

tively simple and have been widely studied are as follows:

1. Moyal Plane (R2
?) : − [x̂α, x̂β] = iθ εαβ ; (note that α, β = 1, 2) ; (1.17)

2. 3D Moyal space (R3
?) : − [x̂i, x̂j] = iθij = iεijkθk ; i, j, k = 1, 2, 3 ; (1.18)

3. Fuzzy Sphere (R3
θ f
) : − [x̂i, x̂j] = iθ f εijk x̂k, θ f is another constant3 (1.19)

and a fixed value of the Casimir.

3 Note that θ has the dimension of length squared but θ f has the dimension of length.
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Although non-commutative field theories have been extensively studied (see [8, 17] and

references there in) using the star products, quantum mechanics on Moyal plane (1.17) and

fuzzy sphere (1.19) were first studied in [43] without using any star product but a complete

operator method. However, the complete operatorial formalism of non-commutative quan-

tum mechanics on Moyal plane with the proper concepts of classical configuration space or

more precisely, an auxilliary Hilbert space Hc furnishing a representation of just the non-

commutative algebra (1.17). Note that this coordinate algebra is a sub-algebra of the entire

noncommutative Heisenberg algebra, obtained by augmenting the above mentioned coordi-

nate algebra with the ones involving linear momentum operators:

[P̂α, P̂β] = 0 ; [X̂α, P̂β] = iδαβ ; (putting h̄ = 1). (1.20)

On the contrary, the Hilbert space furnishing a representation of the entire Heisenberg alge-

bra is the quantum Hilbert space and was first developed in [44, 45]. In this formalism, the

quantum states are represented by Hilbert-Schmidt operators4 acting on classical configura-

tion space Hc and has the structure of Boson Fock space. Thus, this operatorial formalism

of non-commutative quantum mechanics is referred to as the Hilbert-Schmidt operator for-

malism of non-commutative quantum mechanics. This formalism for Moyal plane (1.17), 3D

Moyal space (1.18) and fuzzy sphere (1.19) will be reviewed in the next chapter 2. The eigen-

value problem for the infinite and finite non-commutative spherical wells in Moyal plane was

solved in [44] where the time reversal symmetry was found to be broken. Further, the eigen-

value problem of free particle and harmonic oscillator on Moyal plane were solved in [45, 46].

A very important observation made in [45] in the context of harmonic oscillator is the fact

that the spread of the ground state wave packet cannot be squeezed below the length-scale√
θ even in the limit of infinitely steep potential well (ω → ∞). This displays the fact that

the noncommutativity can indeed play a role in preventing a potential gravitational collapse

in the localization process as mentioned earlier. Of course, all these solutions reduce to the

standard results in the commutaive limit. The generalization of non-commutative quantum

mechanics to 3D Moyal space in the Hilbert-Schmidt operator formalism was given in [47]

where the breaking of SO(3) symmetry was observed in presence of interaction, despite its

restoration at the level of coordinate algebra through the deformed co-product (1.10). The

Hilbert-Schmidt operator formalism for the case of fuzzy sphere (1.19), which has an SO(3)

symmetry, was first developed in [48] where the Coulomb problem of non-commutative

quantum mechanics was solved. In [49], the Schrödinger equation for the free particle, fi-

nite and infinite fuzzy wells on fuzzy sphere was solved using the Hilbert-Schmidt operator

formalism of non-commutative quantum mechanics.

On a non-commutative space, since the position operators do not commute, the notion of

position, at best, can be preserved using the minimal uncertainty state through the use of

coherent states [45]. In the Hilbert-Schmidt operator formalism of non-commutative quan-

tum mechanics on Moyal plane, two types of position bases are defined, viz Moyal and

4 Weyl operators corresponding to the square-integrable functions.
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Voros position bases [38], corresponding to the Voros and Moyal ?-products. The inequiv-

alence between Voros and Moyal position bases in this operator formalism was shown in

[38] by demonstrating the non-invertibility of T-map (1.15), as mentioned earlier. And when

invertible they are related by a similarity transformation, as Voros basis is not orthonormal,

in contrast to Moyal basis. This inequivalence was also demonstrated explicitly by comput-

ing the free particle transition amplitudes through path integral formalism given in [50].

It is shown in [45] that the Voros position basis is the only physical basis in Moyal plane

as it conforms to the positive operator valued measure (POVM) [51] and it is the minimal

uncertainty state in Moyal plane. However, the Moyal position basis is found to be the simul-

taneous eigenstates of the unphysical, commuting position operator X̂α
c which is related to

the physical position operator X̂α as

X̂α
c =

1
2
(
X̂α

L + X̂α
R
)
= X̂α +

θ

2
εαβP̂β . (1.21)

Note that we denote by X̂α
L and X̂α

R the left and right action of the position operator X̂α

on the quantum state. The Voros and Moyal position bases on 3D Moyal space (1.18) were

introduced in [47] where the Moyal basis is still the eigenstate of the commuting position

operator in 3D

X̂i
c =

1
2
(
X̂i

L + X̂i
R
)
= X̂i +

1
2

θijP̂j. (1.22)

Thus, we study the properties of Voros position basis and the issue of maximal localization

of a single particle in 3D Moyal space in this thesis. This has been pursued by using the

symplectic invariant formulation of uncertainty relation in the 2n-dimensional phase space:

det V ≥ 1
4n , (1.23)

through the computation of the variance matrix V. Since the symplectic invariant uncertainty

relation in phase space for non-commutative case is not known, we apply the commutative

relation (1.23) after getting commutative variance matrix (V0) from the non-commutative

variance matrix Vθ by using (1.22).

The twisted statistics on Moyal plane have been well studied by using star products [26,

27]. However, this twisted statistics for 3D Moyal space in the Hilbert-Schmidt operator for-

malism was not studied earlier. We have studied this in this thesis by extending the Hilbert-

Schmidt operator formalism on 3D Moyal space to many-particle system and then carrying

out the second quantization. Then, there arises two types of bases in the momentum space

of many-particle system: the twisted basis and the so-called "quasi-commutative" basis. The

twisted basis yields the twisted statistcs but the quasi-commutative basis yields the usual

statistics of commutative case and hence the name quasi-commutative. Thus, on 3D Moyal

space, we have two momentum bases and also two types of position bases (Voros and Moyal)

which can be expressed in terms of these momentum bases. Then considering a canonical

ensemble of free gas consisting of a pair of identical particles in 3D Moyal space, we compute
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the two-particle correlation functions corresponding to twisted Voros and Moyal bases and

quasi-commutative Voros and Moyal bases. The inequivalence between Voros and Moyal po-

sition bases become more transparent from the expressions of correlation functions for each

case apart from a deformation in the thermal wavelength. Also, from these computations the

thermal effective potential [52] on 3D Moyal space are plotted for different bases [53] and

the comparison between commutative and non-commutative statistics have been made.

1.2 non-commutative geometry

After a reliable formulation of quantum mechanics on non-commutative spaces (1.17) and

(1.19), we would like to study the geometry of such spaces. Clearly, the usual techniques

of Euclidean and Riemannian geometry cannot be applied on such spaces as they lack the

notion of points and paths, in particular geodesics. Thus, to define geometry on such spaces

we will follow the standard approach of non-commutative geometry formulated by Alian

Connes [1, 54]. This is the most generalized mathematical approach to study the geometry of

non-commutative spaces by extracting the informations from the algebraic structures defined

on the space.

The idea of non-commutative geometry [1] is motivated by the well known Gelfand

Naimark theorem [55] and John von Neumann’s works on the mathematical theory of quan-

tum mechanics [56]. The Gelfand Naimark theorem gives a duality between topological

structure and algebraic structure defined on some set X. According to this theorem [55], the

category of compact Hausdorff topological spaces with the continuous maps as morphisms is dual or

anti-equivalent to the category of unital commutative C∗-algebras (algebras of continuous complex-

valued functions) with the unital ∗-homomorphisms (for the definitions, if needed, see appendix

C). This is still valid for locally compact spaces for which the morphisms are continuous

proper maps corresponding to the proper ∗-homomorphisms between non-unital commu-

tative C∗-algebras [57]. This means given a commutative C∗-algebra A we can associates a

c-number to each element of A by defining a character µ(a)5 or spectrum σ(a) or state ω(a),

∀ a ∈ A (see appendix C). Then, the character space M(A) or spectrum Σ(A) or space

of pure states P(A) of A (these spaces are all isomorphic to each other for commutative

C∗-algebras) will have a relative topology (Gelfand topology) induced by the norm topology

defined on the dual of the algebra A∗. Thus, if the commutative C∗-algebra A is the algebra

C(X) of continuous complex-valued functions defined on a Hausdorff topological space X,

then we have the Gelfand Naimark duality:

M(A) ∼= X ; C(M(A)) ∼= C(X). (1.24)

Further, it is possible to get the information of a vector bundle E(X) on a compact Haus-

dorff topological space X from the space of sections Γ(E(X)) which form module over the

5 We have put all the definitions in appendix C
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C
Complex plane

ff(x) ∈ C

x ∈ X
Topological space

A = C(X)f ∈ A,

(Commutative

C∗-algebra)

µ

A∗
(dual space of A)
topological space

M(A)
µ ∈ M(A), µ(f) ∈ C

(structure space of A)

Gelfand topology on

Homeomorphism

Figure 1.1: Pictorial representation of Gelfand Naimark Theorem.

commutative C∗-algebra C(X) on X. This is given by the Swan theorem [58] which states

that the category of complex vector bundles on a compact Hausdorff space is equivalent to the cate-

gory of finitely generated projective modules over the unital commutative C∗-algebra (this statement

is taken from [57]).

This duality between topological spaces and commutative C∗-algebras can be extended to

include the non-commutative C∗-algebras and hence one can talk about the "non-commutative

space" dual to an arbitrary C∗-algebra. In [59, 60], Woronowiz extended the Gelfand Naimark

theorem for non-commutative C∗-algebra where he referred the corresponding space as

"psuedospace or quantum space" and hence "Non-commutative Gelfand Naimark theorem".

Note that a non-commutative C∗-algebra has few characters. For example, the algebra Mn(C)

of n× n complex matrices have no character at all [61] so that the space corresponding to

such algebra has few points. But one can still define the spectrum of Mn(C) matrices and

the states on Mn(C) so that the pure states of the C∗-algebra play the role of points on a

generalized space. In this way, by studying the algebraic structures defined on some space

X, we can extract the topological informations of X or vice versa. Thus, one can have the

following dictionary 1.1 between the spaces and the algebras defined on such spaces [62].

By the second Gelfand Naimark theorem, given a separable Hilbert space H with the alge-

bra B(H) of bounded operators on H with an operator norm, any norm closed subalgebra
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Table 1.1: Dictionary of duality between space and algebra

Space Algebra

Compact Hausdorff topological space Unital commutative C∗-algebra

Locally compact Hausdorff topological space commutative C∗-algebra

Continuous map ∗-homomorphism

Homomorphism Automorphism

Open set Ideal

Closed set Quotient algebra

Point Pure state

Vector bundle Finitely generated projective module

Non-commutative space Non-commutative C∗-algebra

of B(H) is a separable C∗-algebra. Thus, we can describe all C∗-algebras as operators acting

on some Hilbert space.

In this way, given a C∗-algebra A we get the non-commutative topology on the space S(A)
of states but to study the geometry of S(A), we have to define the differential structures on

S(A). Getting hint from Milnor’s works [63] where he found that all the information about

a compact Riemannian manifold M cannot be extracted just from the eigenvalues of the

Laplace operator on M. Rather, the Dirac operator D 6 plays a more fundamental role. Thus,

Connes introduced the so-called "Spectral triple" (A,H,D) [64] consisting of an involutive

algebra A acting on a Hilbert space H, through a representation π, with an unbounded, self

adjoint operator D which is the generalized Dirac operator. The spectral triple with certain

axioms [65] will generalize the notions of manifolds (topological spaces with additional

structures) and differential geometry. Thus, a spectral triple defines a ’non-commutative

manifold’, where the algebra A will give the information about the topological properties

and the Dirac operator D will give the geometric informations. In this way, one can talk about

the “quantized differential calculus” called "Non-commutative differential geometry" [64] of

a quantized space using algebraic objects defined on the space. Moreover, Connes gave a

distance formula called the "Spectral distance" which generalizes the notion of geodesic

distance without invoking any path but given in terms of the normalized positive functionals

i.e. states ω’s on the algebra, under certain conditions (this has been reviewed in chapter 5),

as

d(ω′, ω) = sup
a∈A
{|ω′(a)−ω(a)| : ‖[D, π(a)]‖ ≤ 1}. (1.25)

This exactly gives the geodesic distance of the compact Riemannian spin manifold M when

computed between the pure states δ(x) = ωx( f ) and δ(y) = ωy( f ) of the algebra A =

6 Dirac operator is obtained by contracting the covariant derivative on the spinor module via the Clifford multi-
plication and is more fundamental than the Laplace operator since by Lichnerowicz formula, D2 = ∆+ s

4 where
∆ is the Laplacian and s is the scalar curvature.
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C∞(M), ( f ∈ A) of smooth functions on M where the commutative spectral triple consists

of (A = C∞(M),H = L2(M, S),D = /D) with L2(M, S) being the Hilbert space of square

integrable spinors, S is the spinor bundle over M and /D is the usual Dirac operator of

compact Riemannian spin manifold M. Thus, without introducing any concept of space,

points, curves, surfaces (which may not simply exist at the length scale of quantum gravity

where we believe the natural structure of Minkowski space-time will break down) but by

just studying the algebra of observables which is a C∗-algebra, we would be able to extract

all the possible geometric information about the quantized space-time.

One should note that the language of non-commutative geometry has been successfully

used to prove that the Hall conductivity is quantized in integer quantum Hall effect [66].

More significantly a non-commutative geometrical formulation unifying the Einstein’s gen-

eral theory of relativity with the Standard model of particle physics as a pure gravity theory

of a non-commutative manifold called an ‘almost commutative manifold’ M × F where M

is the compact Riemanniam spin manifold and F is an internal “discrete” space and de-

scribed by finite rank matrices having a non-trivial inner-automorphism group, which in

turn describes the gauge contents of the particle theory as was shown in [65, 67]. This was

eventually used to post-dict the Higgs mass of 125 GeV [68]. The idea of introducing an

almost commutative manifold is somewhat like the Kaluza-Klein theory [69] which succces-

fully unified the Einstein’s gravity theory with that of electromagnetism with group U(1)

or for that matter any gauge theory with group G at the classical level by introducing an

internal compact manifold, in the form of a circle S1 or a suitable coset space G/H [70, 71].

In contrast, Connes’s idea is to replace the internal compact manifold in each point of the

spacetime by the discrete space F described by finite rank matrices and of zero dimension

and carrying the non-commutative structure. This stems from the fact that the total action

St = SE + SSM ; SE → Einstein-Hilbert action and SSM → Standard model action, (1.26)

of the particle theory living on a general space-time has the symmetry group, given by the

semi-direct product G o Di f f (M), of the gauge group G of all maps, i.e., G : M → SU(3)×
SU(2) × U(1) of SSM and Di f f (M) being the symmetry of SE. By a mathematical result

obtained in [72, 73], we know that Di f f (M) of a differential manifold M cannot have a non-

trival normal subgroup. If there exists a manifold X for which the diffeomorphism group

is G o Di f f (M), then clearly X cannot be a usual differentiable manifold as it contains the

normal subgroup G. However, if we consider a “non-commutative manifold” corresponding

to a non-commutative algebra, clearly the automorphism group of the algebra contains a

non-trival normal subgroup called the inner automorphism group and hence corresponds

to non-trival normal subgroup of the symmetry of the non-commutative manifold. This

captures the gauge content of the theory. Hence, unification of the Einstein’s gravity and

the Standard model of the particle physics can be made possible only if the total space

where both theories live is non-commutative. One should note that this unification is purely

classical in the sense that we are taking Einstein’s gravity and the quantization of this pure
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gravity theory is yet to be obtained. It is generally believed that the quantization of such

theory can be achieved if we consider a truely non-commutative manifold M? × F, where

M? is a non-commutatve space-time. This motivates us to study the non-commutative space-

time and its geometry from the standard approach of non-commutative geometry. However,

in this thesis we would like to study the metric properties of the most widely studied non-

commutative spaces viz Moyal plane and Fuzzy sphere.

As we have mentioned earlier, the way (mostly taken) for studying non-commutative

spaces is by considering it as a deformation of commutative ones. For example, Moyal plane

R2
? is the deformation of Euclidean plane R2 and fuzzy sphere S2

? that of the 2-sphere S2.

It was shown in [74] that A2
? = (S(R2), ?M) is the corresponding deformed algebra of the

Moyal plane R2
?, where S(R2) is the space of Schwartz functions (smooth and rapidly de-

creasing functions on R2) and ?M is the Moyal star product. The corresponding spectral

triple using Moyal star product for the Moyal plane has been obtained in [75]:

(
A?M = (S(R2), ?M) , H?M = L2(R2)⊗C2 , D?M = −iσα∂α

)
, (1.27)

where D?M is the Dirac operator of ordinary Euclidean plane R2 as this spectral triple (1.27)

is just the isospectral deformation of the commutative spectral triple of R2 [76]. Then the

Connes’ spectral distance on the Moyal plane is computed in [77, 78] using the spectral

triple (1.27). As we have already mentioned that the different choices of star products may

lead to different results, the algorithm (adaptable to the framework of Hilbert-Schimdt oper-

ator formalism of non-commutative quantum mechanics) of computing infinitesimal Connes’

spectral distance between any pair of normal states represented by density matrices given in

[79] seem to be a better approach to determine the metric properties of Moyal plane.

The algorithm of finding Connes’ spectral distance given in [79] defines the distance be-

tween pure density matrices which represent the pure normal states so that the generaliza-

tion to mixed states can be easily made. The infinitesimal distance between two neighbouring

pure density matrices using the simplified formula given in [79] has the same structure as

that of the induced metric from the Hilbert space inner product obtained in [80]. Further, in

this approach [79], vectors |ψ〉’s on the classical configuration space Hc have one-to-one cor-

respondence with the corresponding pure density matrices ρc = |ψ〉〈ψ| acting on Hc. Since

the quantum Hilbert space Hq has the tensor product structure Hc ⊗H∗c , the elements of Hq

can have either diagonal form |ψ, ψ) ≡ ||ψ〉〈ψ|)7 or off-diagonal form |ψ, φ) ≡ ||ψ〉〈φ|). This

implies that there is one-to-one correspondence of diagonal states |ψ, ψ) on Hq with the pure

density matrices ρq = |ψ, ψ)(ψ, ψ| acting on Hq and also with the states |ψ〉 ∈ Hc but the

off-diagonal states |ψ, φ) on Hq have one-to-one correspondence with the pure density matri-

ces ρ′q = |ψ, φ)(ψ, φ| but many-to-one correspondence with states |ψ〉, |φ〉 ∈ Hc. This feature

of non-commutative quantum mechanics doesn’t have commutative counterparts and hence

makes the quantum Hilbert space interesting. This amounts to the presence of additional

degrees of freedom on the quantum Hilbert space Hq of a non-commutative system [81].

7 We denote element of Hc by angle ket |ψ〉 and that of Hq by round ket |ψ)
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We can briefly describe this additional degrees of freedom by considering states which have

off-diagonal form, particularly, |z, φ) = |z〉〈φ|, where 〈φ| is arbitrary. For such states, we

have 〈X̂1〉|z,φ) =
√

θ
2 (z + z̄)

(
z = 1√

2θ
(x1 + ix2) which indicates the insensitivity of position

measurements on the right sector of the position eigenstates |z, φ). Moreover, as shown in

[81] this variable φ cahracterizing the right sector of the position eigenstates |z, φ) can be

used to decompose the Voros star product as follows:

|z) ?V (z| = ∑
φ

|z, φ)(z, φ|. (1.28)

Thus, the additional structure of non-commutative quantum system is manifested in this

operator formalism.

In [79], computation of infinitesimal Connes’ spectral distance between mixed states ρq(z) =

∑∞
n=0 |z, n)(z, n| representing the position of a particle localized at a generalized point (x1, x2)

)
on the quantum Hilbert space of Moyal plane is done using the simplified formula. The effect

of additional degrees of freedom shows up in this spectral distance on Hq which manifests

a connection between the statistics and geometry on Moyal plane. This feature has been

checked on fuzzy sphere [82] showing that this is a generic feature of non-commutative

spaces.

However, this algorithm works for only infinitesimal distance between discrete normal

states and give the exact infinitesimal distance between coherent states up to a numerical

factor. Besides, in the absence of any geodesic in a generic non-commutative space, the

infinitesimal distance cannot simply be integrated to compute finite distance. This motivates

us to improve the algorithm [79] of computing finite Connes’ spectral distance for any pair

of normal states without using any star products and check the interesting consequences on

quantum Hilbert space of fuzzy sphere. Thus, we extend this algorithm to compute finite

distance Connes’ spectral distance between any pair of normal states on non-commutative

spaces, both for Moyal plane and fuzzy sphere.

Fuzzy sphere was first introduced in [83]. It can be understood by studying the algebraic

properties of the commutative 2-sphere S2. Let C(S2) be the algebra of complex-valued func-

tions on S2 where each element f (xi) has a polynomial expansion in xi:

f (xi) = f0 + fixi +
1
2

fijxixj + ..... ; where fijk... are some constants. (1.29)

Here, one can construct a sequence of approximations to function f (xi) ∈ C(S2) and such

approximations will yield the fuzzy sphere. For example, if we truncate (1.29) to constant

term f0 the algebra C(S2) reduces to the algebra A1 = C yielding the geometry of a single

point. The truncation of (1.29) after fi term can lead us to two ways of getting the algebra

A2, which is a 4D-vector space, from C(S2). If we choose A2 = C⊕C⊕C⊕C, this algebra

is commutative and it will describes the geometry of sphere with four points where there

is no rotational invariance. But to keep the rotational invariance, we can choose the algebra

A2 = M2(C), the algebra of complex 2 × 2 matrices. Clearly, this algebra M2(C) is non-
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commutative and describes the geometry of sphere with two points: North pole and South

pole. This is the fuzzy sphere with maximal fuzziness but with rotational symmetry. The

next truncation of (1.29) after fij term gives a set of functions A3 which is nine-dimensional

vector space because of the constraint xixi = r2. One can define a new product in xi such

that we get the algebra A3 = M3(C) [83]. This algebra describes the fuzzy sphere where we

can distinguish three points: Equator, North pole and South pole. In this way, we can get a

series of algebras A2j+1 with j ∈ Z+/2 describing a series of fuzzy spheres {S2
j } such that

the commutative sphere S2 is recovered when j→ ∞.

Note that the quantization of commutative 2-sphere S2 i.e. fuzzy sphere S2
? (1.19) can be

represented from the phase-space formulation of quantum mechanics for spinning particles

[84]. In the ordinary formulation of quantum mechanics, the j-spin is represented by opera-

tors acting on Hilbert space C2j+1, j ∈ Z+/2. We know that S2 is an orbit of SU(2) and C2j+1

carries an irreducible representation of SU(2) such that an extended Wigner-Weyl correspon-

dence [85] can be established between operators acting on C2j+1 and functions on S2 just like

in case of Moyal plane. Similarly, here we can consider two bases on C2j+1: the eigenvectors

|j, m〉 of the Casimir operator ~̂x2 = x̂2
1 + x̂2

2 + x̂2
3 and x̂3 which we will refer to as the discrete

basis of fuzzy sphere; and the coherent states of SU(2) [86], referred to as the continuous

basis of fuzzy sphere. We will study the properties of the fuzzy sphere using these two type

of bases.

In order to define a legimate spectral triple on fuzzy sphere, we need to define the Dirac

operator for fuzzy sphere. Fuzzy sphere is the isospectral deformation of commutative 2-

sphere [76] which can be understood from the extended Wigner-Weyl correspondence. Us-

ing the coherent states of SU(2), i.e. the continuous basis of fuzzy sphere, the construction

of non-commutative manifold as a non-commutative analog of homogeneous space8 was ob-

tained in [87]. Moreover, the Dirac operator of fuzzy sphere was obtained in [88] by defining

the fuzzy analog of spinor bundle over 2-sphere. Then a legimate spectral triple on fuzzy

sphere is given in [89] where the metric properties of fuzzy sphere are studied using Connes’

spectral distance formula. However, the computation of Connes’ spectral distance is gener-

ally very involved. So we would like to first modify the simpler algorithm [79] to enable us

to compute finite Connes’ spectral distance between normal states on fuzzy sphere which is

adaptable to the Hilbert-Shmidt operator formalism of non-commutative quantum mechan-

ics.

Once again we should note that on non-commutative spaces, the notion of points is served

by the pure states of the algebra in the spectral triple and the role of geodesic distance is

played the Connes’ spectral distance. And the integration of infinitesimal Connes’ spectral

distance between continuous pure states may/may not yield the finite Connes’ spectral dis-

tance as interpolating states may turn out to be mixed, rather than pure. Consequently, the

notion of classical geodesic may not survive in non-commutative spaces.

8 A space X with transitive group action by a Lie group G, i.e. for any x, y ∈ X there exists g ∈ G such that gx = y.
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1.3 plan of the thesis

The thesis is divided into two parts after the introduction. The part I deals with the non-

commutative quantum mechanics studied in a pure operator method called the Hilbert-

Schmidt operator formalism where the use of any star product is avoided. The part I I deals

with the studies of metric properties of non-commutative spaces using the power of spec-

tral triple method of non-commutative geometry which is adapted to the above mentioned

operator formalism of non-commutative quantum mechanics.

In chapter 2 of part I, we have reviewed the Hilbert-Schmidt operator formalism of non-

commutative quantum mechanics for Moyal plane, 3D Moyal space and fuzzy sphere where

necessary distinctions between the classical configuration space and quantum Hilbert space

are made. The difference of two position bases corresponding to two choices of star products

viz Moyal and Voros star products on Moyal plane and 3D Moyal space is highlighted.

In chapter 3 of part I, we have first reviewed the symplectic invariant uncertainty relation

in 2n-dimensional phase space. Then, we have computed the non-commutative variance

matrix in the Voros position basis on 6D phase space for 3D Moyal space. By transforming it

into the corresponding commutative variance matrix using the relation (1.22), we have shown

that the Voros position basis on 3D Moyal space is maximally localized on 6D phase space

but not in 3D coordinate space as there exists non-Voros states for which the uncertainty in

position coordinates is lower than that one computed using Voros states.

In chapter 4 of part I, the extension of operator method of non-commutative quantum me-

chanics to many-particle system has been discussed. Due to the deformation of co-product

(1.10) acting on the multi-particle states under the symmetry transformation of 3D Moyal

space, the notion of twisted bases and the corresponding twisted statistics arise. This leads

to the violation of Pauli exclusion principle for twisted fermions which can be understood

by computing the two-particle correlation functions of canonical free gas. However, one can

also construct a quasi-commutative basis which recovers the Pauli exclusion principle, along

with rotational SO(3) symmetry.

Chapter 5 of part I I gives a brief review of spectral triple formalism of non-commutative

geometry. We have provided a brief summary of spin geometry of a compact Riemannian

manifold discussed extensively in [90, 91]. We have also reviewed the computation of Connes’

spectral distance on a compact Riemannian spin manifold which exactly gives the geodesic

distance. Also, we have given some examples of computation for spaces like Real line R, two-

point space which consists of only two points and also CP1, the space of states of complex

2 × 2 matrices. Moreover, here we have reviewed the construction of coherent states for

Moyal plane and fuzzy sphere as we will compute the spectral distances on their respective

homogeneous spaces.

In chapter 6 of part I I, we have re-visted the spectral triple of Moyal plane defined in

[79], adaptable to the Hilbert-Schmidt operator formalism. Here, we have obtained the most

generalized Connes’ distance formula for any pair of normal states. However, this formula



1.3 plan of the thesis 16

is not user-freindly except for some cases. So, we follow up the procedures given in [77, 78]

to compute the finite spectral distance in Moyal plane. In [78], the spectral distance between

a pair of coherent states on Moyal plane is found to be bounded above by the geodesic dis-

tance on the complex plane. An optimal element as which saturates this bound is found to

be one which does not belong to the algebra but which is a limit point of a sequence of

algebra elements and can be regarded as an element belonging to the multiplier algebra. In

our approach, we have obtained such a sequence of elements as projected elements on the

representation space of the aglebra which is spanned by the eigenspinors of Dirac opera-

tor. Such projected elements are trace-class operators and satisfy the ball condition. Hence,

we find that the spectral distance between a pair of coherent states on Moyal plane is the

geodesic distance on the complex plane. Moreover, we can get the finite distance by inte-

grating the infinitesimal ones and thus the notion of conventional geodesic still exists [92].

Further, we have reviewed the infinitesimal spectral distance between discrete mixed states

on the quantum Hilbert space of Moyal plane, obtained in [79], which reveals a connection

between statistics and geometry.

Chapter 7 of part I I deals with the computation of Connes’ spectral distance on fuzzy

sphere S2
j with a fixed radius rj = θ f

√
j(j + 1). For these, we have followed up the same

prescription done for Moyal plane. However, it is worth noting that the computation of oper-

ator norm, which gives the ball condition, using the eigenspinors of Dirac operator gets very

much simplified here. We have obtained both the infinitesimal and finite Connes’ spectral

distances between any pair of discrete states on the configuration space of fuzzy sphere S2
j .

We have found that the distance between north and south poles S2
j reduces to that of S2 only

in the limit j→ ∞ [82, 89, 92]. This gives us a hint that the spectral distance between a pair of

coherent states on the homogeneous space of fuzzy sphere S2
j will be always bounded above

by the geodesic distance on S2. For any finite j, this bound is never going to saturate. Even

though we cannot obtain an exact distance for a pair of coherent states on fuzzy sphere S2
j ,

we can give a lower bound to the spectral distance between a pair of infinitesimally separated

coherent states on S2
j . Moreover, we get the exact distance on fuzzy sphere S2

1
2

with maximal

fuzziness. Here, we try to provide the spectral distance between a given mixed state with

its nearest pure state as an alternative measure of “mixedness” of a state. Further, we have

obtained an analytic estimate of spectral distance a pair of coherent states on fuzzy sphere S2
1

under some constraints and we have found that this result exaclty agrees with the numerical

results obtained by using the generalized Connes’ distance formula up to 6th decimal places.

Lastly, we provide the conclusion of the thesis in chapter 8. Also, we put the necessary

definitions in the appendices A, B, C and some relevant reviews like construction of Dirac

operators on Moyal plane and fuzzy sphere in the appendix D.
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Non-relativistic quantum physics on
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2
H I L B E RT- S C H M I D T O P E R AT O R F O R M A L I S M

In this chapter, we review the Hilbert-Schmidt operator formalism of non-commutative quan-

tum mechanics on non-commutative spaces. This formalism is a pure operatorial formalism

and is independent of any star product which usually plays an important role in a non-

commutative space. However, different star products can be related to different position

representations defined in this operatorial formalism and give rise to some in-equivalent

physics [35, 36]. This formalism without star product is therefore necessary in order to avoid

those ambiguities arise from using different star products.

2.1 2d moyal plane R2
? [44 , 45]

A Moyal plane is a 2D noncomutative space with the commutation relation: [ x̂1 , x̂2 ] = iθ ,

where θ is the non-commutative parameter. Taking analogy with the 1D quantum harmonic

oscillator where [ x̂ , p̂ ] = i h̄, we can define the following creation and annihilation operators:

b̂ =
1√
2θ

( x̂1 + i x̂2 ) and b̂† =
1√
2θ

( x̂1 − i x̂2 ) with [ b̂ , b̂† ] = 1. (2.1)

The classical configuration space for the Moyal plane R2
? , which is usually R2 for usual

commutative quantum mechanics on R2, is now a Hilbert space itself and can be obtained

as the boson Fock space:

H c = span
{
|n〉 = ( b̂† )n

√
n !
|0〉
}∞

n=0
; where the span is over C. (2.2)

This just furnishes a representation of the coordinate algebra (1.17). In the ordinary for-

malism of quantum mechanics, the physical states of a quantum system is described by

square-integrable functions ψ(x , y) ∈ L2 (R2 ). We can generalize this to non-commutative

quantum mechanics so that Hilbert-Schmidt operators acting on non-commutative config-

18



2.1 2d moyal plane R2
? [44 , 45] 19

uration space H c will represent the physical states of the quantum system. The quantum

Hilbert space can thus be constructed as

Hq =
{
|ψ( x̂α )) = ∑

m ,n
ψmn |m〉〈n | ∈ H c ⊗ H∗c

∣∣∣ trc (ψ† ψ) < ∞
}

, (2.3)

with the inner product

(ψ|φ) = trc(ψ
†φ) , where trc implies trace over Hc . (2.4)

Note that by definition, Hilbert-Schmidt operators are bounded and trace-class (see appendix

C). Moreover, we denote † for Hermitian conjugation on Hc and ‡ for Hermitian conjugation

on Hq.

We can then construct a unitary representation of non-commutative Heisenberg algebra:

[X̂1, X̂2] = iθ , [X̂α, P̂β] = iδα
β , [P̂α, P̂β] = 0 ; (h̄ = 1) , (2.5)

on Hq, analogous to the usual Scrödinger representation as follows:

X̂α|ψ) = |x̂αψ); P̂α|ψ) =
1
θ

εαβ

∣∣[x̂β, |ψ)]
)
. (2.6)

Here, X̂α’s are the observables representing the position coordinates of a quantum particle

moving in a Moyal plane while P̂α’s are the observables representing the momenta of the

particle. Note that Hc just furnishes a representation of the coordinate algebra [x̂1, x̂2] = iθ,

which cannot furnish a representation of the entire non-commutative Heisenberg algebra

(2.5), as an adjoint action required for P̂α cannot be defined there.

Since the momentum operators P̂α commute, we can find its simultaneous eigenstates

which are orthonormal and complete:

|~p) =
√

θ

2π
ei~p.~̂x; P̂i|~p) = pi|~p), (~p|~p′) = δ2(~p− ~p′) and

∫
d2 p|~p)(~p| = 1q. (2.7)

Note that we denote operators acting on Hc by small letters b̂, b̂† with the corresponding

operators on Hq denoted by capital letters B̂, B̂‡ as

B̂/B̂‡|ψ) = |b̂/b̂‡ψ) ; where B̂‡ =
1√
2θ

(X̂1 − iX̂2), B̂ =
1√
2θ

(X̂1 + iX̂2). (2.8)

With this, we can define the complex momentum operators as

P̂ = P̂1 + iP̂2 and P̂‡ = P̂1 − iP̂2 such that P̂2 = P̂2
1 + P̂2

2 = P̂‡P̂ = P̂P̂‡, (2.9)

whose actions on Hq are given by

P̂|ψ) = −i

√
2
θ

∣∣[b̂, |ψ)]
)

and P̂‡|ψ) = i

√
2
θ

∣∣[b̂†, |ψ)]
)
. (2.10)
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2.1.1 Position bases

Due to the non-commutativity of the position operators X̂α, we have the following uncer-

tainty relation:

∆X̂1∆X̂2 ≥
θ

2
, where ∆X̂α =

√
(ψ|X̂2

α|ψ)− (ψ|X̂α|ψ)2. (2.11)

This implies a precise measurement of X̂1 leads to total uncertainty in X̂2 or vice versa. How-

ever, we can preserve the standard notion of position by considering states which saturate

the above uncertainty relation (2.11). Such states can be constructed out of the normalized

coherent states of Hc:

|z〉 = e−zz̄/2 ezb̂† |0〉 ∈ Hc , b̂|z〉 = z|z〉 ; note that (1.14) define z, z̄. (2.12)

Corresponding to each |z〉 ∈ Hc, we have a quantum state |z) = |z〉〈z| ∈ Hq which provide

an overcomplete and non-orthogonal basis on Hq, iff they are composed with a Voros star

product:

1
π

∫
d2z|z) e

←−
∂ z̄
−→
∂ z(z| ≡ 1

π

∫
d2z|z) ?V (z| = 1q and (z1|z2) = e−|z1−z2|2 . (2.13)

Here ?V is the Voros star product (1.12) and we refer to this state |z) = |~x)V as the Voros

position basis of Hq. We can easily check that on such states |z) ∈ Hq, we have

∆X̂1∆X̂2 =
θ

2
, (2.14)

saturating the uncertainty relation. Note that we can define un-normalized projection opera-

tors πz =
1

2πθ |~x)V ∗V V(~x|,

πz =
1

2πθ
|z) ∗V (z| = 1

2πθ ∑
φ

|z, φ)(z, φ| ; π2
z ∝ πz (2.15)

which are positive i.e. (ψ|πz|ψ) ≥ 0 ∀ |ψ) ∈ Hq and form a complete set, i.e.
∫

dx1dx2πz = 1q.

As πz is regarded as a mixed state with equal apriori probability, which is independent of

|φ〉 in (1.28),(2.15). This forces us to relax the strong measurement a la von Neumann to a

weak one, as these operators provide a Positive Operator Valued Measure (POVM) so that

we can provide a consistent probability interpretation by assigning the probability of finding

the outcome of a position measurement to be (x1, x2). For example, if the system is in a pure

state Ω = |ψ)(ψ|, then

P(x1, x2) = trq(πzΩ) =
1

2πθ ∑
φ

(ψ|z, φ)(z, φ|ψ) = 1
2πθ ∑

φ

|(z, φ|ψ)|2. (2.16)
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This clearly goes into the corresponding commutative result in the limit θ → 0. The overlap

of Voros position basis |~x)V with the momentum eigenstate takes the form

V(~x|~p) ≡ (z|~p) =
√

θ

2π
e−

θp2
4 ei
√

θ
2 (pz̄+ p̄z) =

√
θ

2π
e−

θp2
4 ei~p.~x ; (2.17)

with p = p1 + ip2 and p2 = |~p|2 = (p1)
2 + (p2)2. Then the expansion of Voros position basis

in terms of momentum eigenstates can be written as

|~x)V =

√
θ

2π

∫
d2 p e−

θp2
4 e−i~p.~x |~p) =

∫ d2 p
2π

θ e−
θp2

4 ei~p.(~̂x−~x). (2.18)

One can also introduce a Moyal position basis |~x)M [38] which can be expanded as

|~x)M =
∫ d2 p

2π
e−i~p.~x|~p) =

√
θ

2π

∫ d2 p
2π

ei~p.(~̂x−~x). (2.19)

This basis form a complete orthonormal basis as∫
d2x |~x)M ∗M M(~x| =

∫
d2x |~x)M M(~x| = 1q , M(~x|~x′)M = δ2(~x−~x′) (2.20)

and its overlap with the momentum basis is found to be

(~p|~x)M =
1

2π
e−i~p.~x. (2.21)

These Moyal position basis states are found to be the simultaneous eigenstates for the com-

muting unphysical position operators: X̂c
α |~x)M = xα|~x)M, where X̂c

α is defined in (1.21).

However, these states do not conform to the POVM [38]. All these facts suggest that Moyal

basis is just a mathematical construction and is devoid of any physical significance. Never-

theless, we can check that in the commutative limit θ → 0, the difference between these two

position bases disappear as

V(~x′|~x)M =

√
2

πθ
e−

(~x′−~x)2
θ

θ→0−−→ δ2(~x′ −~x). (2.22)

Note that the position representation of a state |ψ) ∈ Hq is simply either V(~x|ψ) ∈ C for

Voros basis or M(~x|ψ) ∈ C for Moyal basis. At this stage only, we can make the comparision

of the non-commutative features with the corresponding commutative features. Moreover,

the appearance of star products can be understood by imposing an algebra structure on the

quantum Hilbert space Hq. We can define a multiplication map m : Hq ⊗Hq → Hq:

m(|ψ⊗ |φ)) = |ψφ) , (2.23)
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in the sense of usual operator product. By expanding any generic state |ψ) ∈ Hq in terms of

the momentum eigenstates as

|ψ) =
√

θ

2π

∫ d2 p
2π

ψ(~p) ei~p.~̂x, where ψ(~p) ∈ L2(R) as (ψ|ψ) = trc(ψ
†ψ) < ∞, (2.24)

we can expand a product state |ψφ) ∈ Hq as

|ψφ) =
θ

2π

∫ ∫ d2 p d2 p′

(2π)2 ψ(~p)φ(~p′) ei(~p+~p′).~̂x e−
i
2 pi p′jθεij . (2.25)

Then the following composition rules implemented by the following star products can be

easily verified

M(~x|ψφ) =
√

2πθ M(~x|ψ) ∗M M(~x|φ) and V(~x|ψφ) = 4π2
V(~x|ψ) ∗V V(~x|φ), (2.26)

where

M(~x|ψ) =
∫ d2 p

(2π)2 ψ(~p) ei~p.~x and V(~x|ψ) =
√

θ

2π

∫ d2 p
(2π)2 ψ(~p) e−

θp2
4 ei~p.~x =

√
θ

2π
e

θ∇2
4 M(~x|ψ).

(2.27)

This reflects the fact that wave function representation of the composite state |ψφ) in Moy-

al/Voros basis is obtained by composing the representations of individual states |ψ) and |φ)
using Moyal/Voros star product. Furthermore, the connection between Voros representation

and Moyal representation of a state |ψ) ∈ Hq is through the T-map (1.15) which is invert-

ible only for a class of Schwartz functions which are smooth on small length scales .
√

θ.

The Hilbert space of functions in Voros representation consists of all that satisfy smooth-

ness condition at this scale ∼
√

θ and any oscillations with wavelength smaller than this

is automatically suppressed exponentially. The wave functions in this representation there-

fore capture the noncommutative features correctly in contrast to the representation in the

Moyal basis. In this sense, we can say that it is the Voros basis which serve as the physical

framework to describe a localized particle in Moyal plane.

2.2 3 d moyal space [47]

The 3D non-commutative Moyal space is such that the three coordinate operators x̂ i with

i = 1, 2, 3 satisfy the folowing algebra:

[ x̂ i , x̂ j ] = iθ i j = iε i jk θk ; where θk =
1
2

ε i jk θ i j is a vector dual to θ i j . (2.28)
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We can always formally choose a suitable R̄ ∈ SO(3) rotation [47] such that x̂ i → ˆ̄x i = R̄ i
j x̂

j

where

R̄ =


cos α cos β sin β cos α − sin α

− sin β cos β 0

sin α cos β sin α sin β cos α

 ; with ~θ = θ


sin α cos β

sin α sin β

cos α

 . (2.29)

After this rotation, the coordinate algebras reduce to the following with the non-commutative

matrix in barred frame as

[ ˆ̄x1, ˆ̄x2] = iθ , [ ˆ̄xα, ˆ̄x3] = 0 ; with Θ̄ = R̄ΘR̄T =


0 θ 0

−θ 0 0

0 0 0

 . (2.30)

It should be emphasised at this stage that the original Θ = {θij} matrix is a constant un-

der rotation [47]; indeed the deformed co-product (see (2.57) below) is precisely employed

to restore automorphism symmetry which in turn, ensures the constancy of Θ. Therefore

there does not exist any rotated frame, for which the noncommutative matrix is given by

Θ̄ matrix (2.30). It is only for simplified construction of quantum Hilbert space that such a

formal rotation R̄ (2.29) has been introduced. Clearly, the ˆ̄x3 coordinate essentially becomes

commutative here so that we can construct the auxilliary Hilbert space as the configuration

space for 3D Moyal space as a tensor product space of Moyal plane Hc and a Hilbert space

spanned by the eigenstates of ˆ̄x3 i.e. |x̄3〉
(

ˆ̄x3|x̄3〉 = x̄3|x̄3〉
)
:

H3
c = span

{
|n, x̄3〉 = |n〉 ⊗ |x̄3〉

}
; (2.31)

where n labels eigenstates of b†b as in (2.2) and x̄3 labels eigenstates of ˆ̄x3. The action of the

original (unbarred) coordinates x̂i on these basis states can be obtained as

x̂i|n, x̄3〉 = {(R̄−1)i
j ˆ̄xj} |n, x̄3〉 = (R̄−1)i

α
ˆ̄xα|n, x̄3〉+ (R̄−1)i

3 x̄3|n, x̄3〉. (2.32)

Likewise, the physical states will be represented by the Hilbert-Schmidt operators i.e., essen-

tially the set of bounded trace-class operator acting on H3
c :

H3
q = span

{
|ψ( ˆ̄xi)) :

∫ dx̄3
√

θ
tr′cψ†ψ < ∞

}
, (2.33)

where tr′c denotes the restricted trace over Hc of Moyal plane. Since |ψ( ˆ̄xi)) ∈ H3
q leave the

subspace H′3c = span{|n, x̄3〉 : fixed x̄3} of H3
c invariant, the quantum Hilbert space of 3D
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Moyal space will be given by the set of Hilbert-Schmidt operators acting on H3
c with the

constraint [ ˆ̄x3, |ψ(x̄i))] = 0:

H3
q = span

{
|ψ(x̄i)) : [ ˆ̄x3, |ψ(x̄i))] = 0 ;

∫ dx̄3
√

θ
tr′cψ†ψ < ∞

}
. (2.34)

Clearly, the inner product on H3
q is defined as

(φ|ψ) = trc(φ
†ψ) =

∫ dx̄3√
θ

tr′c(φ
†ψ). (2.35)

In order to define momentum operators P̂i and its adjoint action onH3
q, we need to introduce

another barred coordinate ‘ ˆ̄x4’ such that [ ˆ̄xj, ˆ̄x4] = iθδj3. That is, ˆ̄x4 commutes with ˆ̄x1, ˆ̄x2 and

is conjugate to ˆ̄x3 so that ˆ̄x4 = iθε43 ∂
∂ ˆ̄x3 where ε34 is the anti-symmetric tensor in ˆ̄x3 − ˆ̄x4

plane, with ε34 = 1. With this, we can define the adjoint action of ˆ̄Pµ on H3
q as

ˆ̄Pµ|ψ) =
1
θ

Γµν[ ˆ̄xν, |ψ)] ; where Γ =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 . (2.36)

Note that by the constraint [ ˆ̄x3, |ψ(x̄i))] = 0 on H3
q, clearly ˆ̄P4|ψ) = 0 so that there are only

three non-trivial momenta ˆ̄Pi. The action of momentum operators P̂i in the original un-barred

frame can then be obtained through linearity as

P̂i|ψ) = (R̄−1)
j
i

ˆ̄Pj|ψ) =
h̄
θ
(R̄−1)

j
iΓjµ[ ˆ̄xµ, |ψ)]. (2.37)

With this, we can define the left action of position operators X̂i on H(3)
q as

X̂i|ψ) = |x̂iψ). (2.38)

Thus, the non-commutative Heisenberg algebra on 3D Moyal space has the following form:

[X̂i, X̂ j] = iθij , [X̂i, P̂j] = iδi
j , [P̂i, P̂j] = 0. (2.39)

The simultaneous eigenstates of the above commuting momentum operators P̂i are given by

|~p) = θ
3
4

2π
ei~p.~̂x =

θ
3
4

2π
ei p̄α ˆ̄xα ei p̄3 ˆ̄x3 , pi x̂i is scalar under R̄ ∈ SO(3). (2.40)
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These momentum eigenstates serve as a complete orthonormal basis on H(3)
q

(~p′|~p) = θ
3
2

(2π)2 trc(e−i~p.~̂xei~p.~̂x) =
∫ dx̄3√

θ
[e−i( p̄′3− p̄3)x̄3

] tr′c [e
−i( p̄′α− p̄α) ˆ̄xα

] = δ3(~p′ −~p) (2.41)

and ∫
d3 p |~p)(~p| = 1q. (2.42)

In the complete analogy with Moyal plane the Voros position basis states |~x)V on H(3)
q are

defined as [47]

|~x)V =
θ

3
4√

2π

∫
d3 p e−

θp2
4 e−i~p.~x |~p) =

( θ

2π

) 3
2
∫

d3 p e−
θp2

4 ei~p.(~̂x−~x). (2.43)

Note that p2 ≡ ~p2 = (p1)
2 + (p2)2 + (p3)2. These states satisfy the following similar relations:

∫ d3x

(2π)2θ
3
2
|~x)V ∗V V(~x| = 1q , and V(~x′|~x)V =

√
2π e−

1
2θ (~x

′−~x)2
, (2.44)

with the overlap with the momentum eigenstates being

V(~x|~p) =
θ

3
4√

2π
e−

θp2
4 ei~p.~x. (2.45)

However, there is no obvious connection between the Voros basis |~x)V and coherent states,

as the latter cannot simply be defined in the odd-dimensional case. Thus we investigate

whether Voros basis states give minimum uncertainty product between position operators

and also between phase space operators in the following chapter 3.

Similarly, the Moyal position basis on 3D Moyal space is introduced as

|~x)M =
∫ d3 p

(2π)
3
2

e−i~p.~x|~p). (2.46)

They satisfy the completeness and orthonormality relations:∫
d3x |~x)M ∗M M(~x| =

∫
d3x |~x)M M(~x| = 1q and M(~x′|~x)M = δ3(~x′ −~x), (2.47)

with its overlap with the monetum eigenstates as

(~p|~x)M =
1

(2π)
3
2

e−i~p.~x. (2.48)

They are the simultaneous eigenstates of the commuting position operators X̂(c)
i (1.22):

X̂i
c|ψ) ≡

1
2
[X̂i

L + X̂i
R] |ψ) , with X̂i

L|ψ) = |x̂iψ) and X̂i
R|ψ) = |ψx̂i). (2.49)
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As defined in [38] onHq, we can impose an additional structure of algebra on the quantum

Hilbert space H3
q [47] by defining a multiplication map:

m(|ψ)⊗ |φ)) = |ψφ). (2.50)

We can expand a generic state |ψ) ∈ H3
q in terms of momentum eigenstates and then express

in barred frame as

|ψ) = θ
3
4

2π

∫ d3 p

(2π)
3
2

ψ(~p) eipi x̂i =
θ

3
4

2π

∫ d3 p̄

(2π)
3
2

ψ(~̄p) ei p̄i ˆ̄xi (2.51)

Making similar expansion for |φ) and the product state |ψφ), we can compute the composi-

tion rules when the product state is represented in the Moyal and the Voros basis:

M(~x|ψφ) = 2πθ
3
4 M(~x|ψ) ∗M M(~x|φ) and V(~x|ψφ) =V (~x|ψ) ∗V V(~x|φ) (2.52)

with

M(~x|ψ) =
∫ d3 p

(2π)
3
2

ψ(~p) eipixi and V(~x|ψ)
θ

3
4√

2π

∫ d3 p

(2π)
3
2

ψ(~p) e−
θp2

4 eipixi . (2.53)

Let us now see the effect of R ∈ SO(3) rotation on a generic state |ψ) ∈ H(3)
q . The state |ψ)

transforms under R as

|ψ)→ |ψR) =
∫

d3 p ψ(~p)ei~p.(R−1~̂x) =
∫

d3 p ψ(~p)ei(R~p).~̂x, (2.54)

and the composite state |(ψφ)) transforms under R as

|(ψφ)R) = U(R)[m(|ψ)⊗ |φ))] =
∫

d3 p d3 p′ ψ(~p)φ(~p′)ei{R(~p+~p′)}.~̂xe−
i
2 pi p′jθ

ij
. (2.55)

However, this rotated composite state is found to be inequivalent with the composite of

rotated states |ψ)R and |φ)R if we use the undeformed co-product ∆0(R) = U(R)⊗U(R) to

implement the rotation on the tensor product state |ψ)⊗ |φ) ∈ H3
q ⊗H3

q as

|ψRφR) = m[∆0(R)(|ψ)⊗ |φ))] =
∫

d3 p d3 p′ ψ(~p)φ(~p′)eiR(~p′).~̂xe−
i
2 (Rp)i(Rp′)jθ

ij
. (2.56)

If we redefine the composite of rotated states |ψ)R and |φ)R using the deformed co-product:

∆θ(R) = F∆0(R)F−1 where F = e
i
2 θij P̂i⊗P̂j , (2.57)

we get

|ψRφR) = m[∆θ(R)(|ψ)⊗ |φ))] =
∫

d3 pd3 p′ψ(~p)φ(~p′)e−
i
2 θij pi p′j eiR(~p+~p′).~̂x = |(ψφ)R). (2.58)
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Thus, the automorphism symmetry on the quantum Hilbert space H3
q is restored by using

deformed co-product and hence the symmetry of non-commutative quantum mechanics on

3D Moyal space is captured by the quantum group structure or it is not an exact symmetry

but a twisted symmetry. This is due to the fact that the noncommutative Θ matrix is constant

(as we can see from (3.26) below) under the action of deformed co-product (2.57). Such

twisted symmetry have serious effects on the multi-particle states which have been shown in

chapter 4 by computing the two-particle correlation functions for a non-relativistic free gas,

at finite temperature.

2.3 fuzzy sphere [48]

Here, the position operators x̂i satisfy the su(2) Lie algebra: [x̂i, x̂j] = iθ f εijk x̂k. By the Jordan-

Schwinger map,

x̂i = χ̂†σiχ̂ = χ̂†
ασ

αβ
i χ̂β ; where σi are the Pauli matrices , (2.59)

we can recover the su(2) Lie algebra through a pair of independent harmonic oscillators

χ̂α/χ̂†
α satisfying the following commutation relations:

[χ̂α, χ̂†
β] =

1
2

θ f δαβ , [χ̂α, χ̂β] = 0 = [χ̂†
α, χ̂†

β] ; α, β = 1, 2. (2.60)

We can now label a generic harmonic oscillator state by the pair of integers n1 and n2 as

|n1, n2〉 =
√

(2/θ f )n1+n2

n1!n2!
χ†n1

1 χ†n2
2 |0〉 , with N̂|n1, n2〉 =

θ f

2
(n1 + n2)|n1, n2〉, (2.61)

where

N̂ = χ̂†
αχ̂α , is the number operator. (2.62)

These states (2.61) are the simultaneous eigenstates of the radius squared operator ~̂x2 and x̂3,

~̂x2|n1, n2〉 = θ2
f j(j + 1)|n1, n2〉 and x̂3|n1, n2〉 = θ f m|n1, n2〉 , (2.63)

where j = n1+n2
2 ∈ Z+/2 and m = n1−n2

2 ,−j ≤ m ≤ j so that we can relabel the states

as |n1, n2〉 ≡|j, m〉. We have the ladder operators x̂± = x̂1 ± ix̂2 which satisfy the following

relations:

[x̂3, x̂±] = ±θ f x̂± , [x̂+, x̂−] = 2θ f x̂3 ; (2.64)

x̂±|j, m〉 = θ f

√
j(j + 1)−m(m± 1)|j, m± 1〉. (2.65)
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With this, the classical configuration space Fc of fuzzy space of type (1.19) can be constructed

as

Fc = span
{
|j, m〉

∣∣ ∀ j ∈ Z/2, −j ≤ m ≤ j
}

. (2.66)

Each j corresponds to the fixed fuzzy sphere S2
j of radius rj = θ f

√
j(j + 1) such that for a

fixed j the Hilbert space is restricted to a finite (2j + 1)-dimensional sub-space

Fj = span{|j, m〉
∣∣ j is fixed,−j ≤ m ≤ j}. (2.67)

Then the quantum Hilbert space, in which the physical states are represented, consists, how-

ever, of those operators generated by coordinate operators only and, since these commute

with the Casimir, the elements of the quantum Hilbert space must in addition commute with

the Casimir, i.e., must be diagonal in j. Therefore, the quantum Hilbert space H f
q of the fuzzy

space of type (1.19) splits into the following direct sum:

H f
q = {Ψ ∈ Span{|j, m〉〈j, m′|} : trc(Ψ†Ψ) < ∞} =

⊕
j

Hj , (2.68)

where Hj = {Ψ ∈ Span{|j, m〉〈j, m|} ≡ |m, m′) : trc(Ψ†Ψ) < ∞ with fixed j}, (2.69)

represents the quantum Hilbert space of a fuzzy sphere S2
j with fixed radius rj.

The quantum Hilbert space H f
q furnishes a unitary representation of analogue of non-

commutative Heisenberg algebra (2.5) and given by

[X̂i, X̂ j] = iθ f εijkX̂k , [ Ĵi, X̂ j] = iεijkX̂k , [ Ĵi, Ĵ j] = iεijk Ĵk , (2.70)

where the linear momentum operators is replaced by the angular momentum operators Ĵi

satisfying the su(2) Lie algebra. The position operators X̂i acts on H f
q by left multiplication

and the angular momentum operators Ĵi acts adjointly on H f
q :

X̂i|ψ) = |x̂iψ) and Ĵi|ψ) = 1
θ f
[x̂i, |ψ)] , ∀ |ψ) ∈ H f

q . (2.71)

Note that Ĵi are the non-commutative analogs of the differential operators or more pre-

cisely the vector fields on S3 which are discussed in appendix D.
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In 2D Moyal plane, the Voros position basis states are the maximally localized states, i.e.

given by the normalized coherent states. But in 3D Moyal space, the Voros position basis

states have no obvious connection with the coherent states. They are not maximally localized

states in 3D configuration space even though they are maximally localized states in 6D phase

space. We show this by using the symplectic invariant uncertainty relation in phase space.

3.1 review of symplectic invariant uncertainty relations

The most widely understood uncertainty relation in quantum mechanics is the Robertson

uncertainty relation which takes the form:

∆ Â ∆ B̂ ≥ 1
2 i
〈 [ Â , B̂ ] 〉 ; ∆ Â =

√
〈ψ | A 2 |ψ 〉 − 〈ψ | A |ψ 〉 2 (3.1)

where Â and B̂ denote the quantum Hermitian operators and ∆ Â is the standard deviation

of Â in a state |ψ 〉 . However, we also have the Schrödinger uncertainty relation which has

the form:

∆ Â ∆ B̂ ≥
√(

1
2
〈 { Â , B̂ } 〉 − 〈 Â 〉 〈 B̂ 〉

) 2

+

(
1
2 i
〈 [ Â , B̂ ] 〉

) 2

, (3.2)

where { . , . } denotes anti-commutator and [ . , . ] denotes commutator. The latter (3.2) is the

most generalized form of uncertainty relation in quantum mechanics [93] (see appendix B).

3.1.1 Variance matrix and Williamson theorem

Let us recast the Schrödinger’s uncertainty relation in terms of Variance matrix by renaming

the position and momentum operators by a single phase-space operator Ẑ such that Ẑ i =

X̂ i
c with i = 1 , 2 , 3 . and Ẑ i+ 3 = P̂i . Here, we are considering the commutative quantum

mechanics with the Heisenberg algebra:

[ X̂ i
c , X̂ j

c ] = 0 ; [ X̂ i
c , P̂ j ] = i δ i

j ; [ P̂i , P̂ j ] = 0 . (3.3)

29
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Then the Schrödinger uncertainty relation for the phase-space operators will be given by

∆ Ẑ a ∆ Ẑ b =
√

(V c
a b )

2 + (Ω c
a b )

2 ; a , b = 1 , 2 , . . . , 6 , (3.4)

where Vc
ab is the ab-th element of the commutative variance matrix Vc:

Vc
ab =

1
2
〈{Ẑa, Ẑb}〉 − 〈Ẑa〉〈Ẑb〉 ⇒ Vc = {Vc

ab} =
Vc

XX Vc
XP

Vc
PX Vc

PP

 (3.5)

and Ωc
ab is the ab-th element of the symplectic matrix Ωc:

Ωc
ab =

1
2i
〈[Ẑa, Ẑb]〉 ⇒ Ωc = {Ωc

ab} =
1
2

 03 I3

−I3 03

 ; I-unit matrix , 0-null matrix. (3.6)

Here, the expectation values are taken in a certain state |ψ〉.
Let us now consider a generalized variance matrix V which is 2n× 2n square matrix cor-

responding to a 2n-dimensional phase space (above, we consider n = 3). By Williamson’s

theorem [94], we know that any arbitrary Variance matrix Vc can be brought to a diagonal

form by a symplectic transformation i.e., Vd = SVcST, where S ∈ Sp(2n, R) is a symplectic

matrix satisfying Ωc = SΩcST. This ‘symplectically’ diagonalized Variance matrix Vd com-

prises of the the symplectic eigenvalues νj/2 (up to the orderings of νj) of Vc, which are at

least doubly degenerate:

Vd = diag(ν1/2, ..., νn/2, ν1/2, ..., νn/2). (3.7)

This symplectic spectrum is not equal to the ordinary spectrum but can be obtained through

the ordinary spectrum of |2iΩcVc|, as the composite object (ΩcVc) undergoes a similarity

transformation, if Vc undergoes a symplectic transformation [95]. Correspondingly, the den-

sity matrix ρ = |ψ〉〈ψ| transforms a ρ → U(S)ρU†(S), where Û(S) is a unitary opera-

tor implementing the symplectic transformation. This implies that this diagonal Vd in 2n-

dimensional phase space splits into n-copies of independent 2-dimensional phase space. It

is therefore convenient to consider the Schrödinger’s uncertainty relation (3.4) for 2D phase

space re-written as,

∆Ẑα∆Ẑβ ≥
√
(Vc

αβ)
2 + (Ωc

αβ)
2 . (3.8)

Identifying Ẑ1 = X̂1
c and Ẑ2 = P̂1, this inequality is equivalent to ∆X̂1

c
2 ≥ ν1

2 ; ∆P̂1
2 ≥ ν1

2

whereas ∆X̂1∆P̂1 ≥ 1
2 . Here we have taken Vd

11 = Vd
22 = ν1

2 and Vd
12 = Vd

21 = 0 without loss of

generality, so that the spread ∆X̂1 and ∆P̂1 are equal. Further, we have used the symplectic
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invariant form of Ω0 : Ωc
12 = −Ωc

21 = 1
2 and Ωc

11 = Ωc
22 = 0. Compatibility among these

three inequalities implies

ν1 ≥ 1 or, equivalently det Vc ≥ 1
4

. (3.9)

Thus for a bonafide Variance marix Vc we must have the symplectic spectrum to be such

that νj ≥ 1 ∀j or more generally

det Vc ≥ 1
4n (3.10)

for the general 2n-dimensional phase space. This provides a symplectic Sp(2n, R) invariant

formulation of the uncertainty relation. Finally, note that both Robertson and Schrödinger

form of uncertainty relations become equivalent in this diagonal form.

3.2 computation of non-commutative variance matrix

For a quantum system on non-commutative 3D Moyal space, the above formalism of ob-

taining a symplectic invariant form of uncertainty relation is not directly applicable as it

is not known whether the Williamson’s theorem remains valid or not for non-commutative

quantum mechanics (θ 6= 0). Here, we denote the single space operator by Ẑθ :

Ẑθ
i = X̂i , Ẑθ

i+3 = P̂i ; with the commutation relations (2.39) among them. (3.11)

Thus, we denote non-commutative variance matrix by Vθ and the non-commutative sym-

plectic matrix by Ωθ . Since the commutative position operators X̂i
c is related to the non-

commutative position operators X̂i by (1.22), we can define the following transformation

matrix M:

X̂i
c = Mi

jX̂
j ; where M =

I3 Mθ
3

03 I3

 , with Mθ
3 =


0 θ3

2 − θ2
2

− θ3
2 0 θ1

2
θ2
2 − θ1

2 0

 . (3.12)

With this, the non-commutative variance matrix Vθ and symplectic matrix Ωθ can be trans-

formed into commutative ones Vc (3.5) and Ωc (3.6) as follows:

Vc = MVθ MT and Ωc = MΩθ MT. (3.13)

The ab-th element of non-commutative variance matrix Vθ and symplectic matrix Ωθ have

the similar forms as those of commutative ones (3.5) and (3.6):

Vθ
ab =

1
2
〈{Ẑθ

a , Ẑθ
b}〉 − 〈Ẑθ

a〉〈Ẑθ
b〉 and Ωθ

ab =
1
2i
〈[Ẑθ

a , Ẑθ
b ]〉. (3.14)
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We can also rewrite the non-commutative variance matrix Vθ and symplectic matrix Ωθ

Vθ =

Vθ
XX Vθ

XP

Vθ
PX Vθ

PP

 and Ωθ = − i
2

〈[X̂i, X̂j]〉 〈[X̂i, P̂j]〉
〈[P̂i, X̂j]〉 〈[P̂i, P̂j]〉

 , (3.15)

where the block matrices of Vθ are given by

Vθ
XX =

1
2
〈{X̂i, X̂j}〉 − 〈X̂i〉〈X̂j〉 ; Vθ

XP =
1
2
〈{X̂i, P̂j}〉 − 〈X̂i〉〈P̂j〉 (3.16)

Vθ
PX =

1
2
〈{P̂i, X̂j}〉 − 〈P̂i〉〈X̂j〉 ; Vθ

PP =
1
2
〈{P̂i, P̂j}〉 − 〈P̂i〉〈P̂j〉. (3.17)

In order to study the properties of Voros basis we compute the above expectation values in

the physical Voros position basis |~x)V (2.43):

|~x)V =
θ

3
4√

2π

∫
d3 p e−

θp2
4 e−i~p.~x |~p) ; V(~x|~x)V = 1. (3.18)

First of all, we compute the block Vθ
XX. For that, we compute the expectation values of X̂i and

the composite X̂iX̂j in the normalized Voros states (3.18). Since going to the barred frame

through R̄ ∈ SO(3) rotation (2.29) minimizes the non-commutativity of 3D Moyal space, the

computation of expectation values also get simplified. For example,

V(~x|X̂i|~x)V = R̄−1
ij V(~x| ˆ̄Xj|~x)V = R̄−1

ij V(~x| ˆ̄xj|~x)V ; ˆ̄Xi|ψ) = | ˆ̄xiψ) , ∀ |ψ) ∈ H3
q. (3.19)

We find that

V(~x| ˆ̄xj|~x)V =
θ

3
2

(2π)
3
2

∫ ∫
d3 p d3 p′e−

θ
4 (~p

2+~p′2) e−i(~p−~p′).~x(~p′| ˆ̄xj|~p) , with (3.20)

(~p′| ˆ̄xα|~p) = −iδ(p3 − p′3)δ(pβ − p′β)e
− θ

4 (pα−p′α)2+ i
2 θεαβ(pα−p′α)pβ

∂

∂pα
δ(pα − p′α); (3.21)

(~p′| ˆ̄x3|~p) = −iδ(p1 − p′1)δ(p2 − p′2)
∂

∂p3
δ(p3 − p′3) (3.22)

Thus, we obtain

V(~x| ˆ̄Xj|~x)V = x̄j ⇒ V(~x|X̂i|~x)V = R̄−1
ij x̄j = xi . (3.23)

Further, we need to calculate the expectation values of the composite X̂iX̂j and then its

symmetrized 〈{X̂i, X̂j}〉 and anti-symmetrized expectation values 〈[X̂i, X̂j]〉. One should note

that the composite X̂iX̂j doesn’t transform as a second rank tensor under R̄ ∈ SO(3), as

was shown in [47]. As already reviewed in chapter 2, if the operator x̂i transforms under

R ∈ SO(3) rotation as x̂R̄
i ≡ ˆ̄xi = R̄ij x̂j, then the composite operators x̂i x̂j transform as

(x̂i x̂j)
R̄ = m[∆θ(R̄)(x̂i ⊗ x̂j)] , to preserve the automorphism symmetry (2.58). (3.24)
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After computation, we get

(x̂i x̂j)
R̄ = m[∆θ(R̄)(x̂i ⊗ x̂j)] = x̂R̄

i x̂R̄
j +

i
2

θij −
i
2

R̄ikθkl(R̄T)l j. (3.25)

With this, we have the rotated anti-commutator and commutator of x̂i, x̂j:

(x̂i x̂j)
R̄ + (x̂j x̂i)

R̄ = x̂R̄
i x̂R̄

j + x̂R̄
j x̂R̄

i , while (x̂i x̂j)
R̄ − (x̂j x̂i)

R̄ = iθij . (3.26)

This means that the anti-commutator transforms as a tensor, whereas the commutator trans-

forms as an invariant SO(3) scalar, as was observed earlier [47]. Thus, under the rotation R̄,

we have

V(~x|{X̂i, X̂j}|~x)V = R̄−1
im R̄−1

jn V(~x|{ ˆ̄Xm, ˆ̄Xn}|~x)V (3.27)

This gives after a straightforward computation

V(~x|X̂iX̂j|~x)V = xixj +
θ

2
δij −

θiθj

4θ
+

i
2

θij. (3.28)

so that upon symmetrization and anti-symmetrization, we respectively obtain

1
2
〈{X̂i, X̂j}〉 = xixj +

θ

2
δij −

θiθj

4θ
and

1
2
〈[X̂i, X̂j]〉 =

i
2

θij. (3.29)

We then get

Vθ
XX =


θ
2 −

θ2
1

4θ − θ1θ2
4θ − θ1θ3

4θ

− θ1θ2
4θ

θ
2 −

θ2
2

4θ − θ2θ3
4θ

− θ1θ3
4θ − θ2θ3

4θ
θ
2 −

θ2
3

4θ

 and Ωθ
XX =

1
2


0 θ3 −θ2

−θ3 0 θ1

θ2 −θ1 0

 . (3.30)

Now to compute the second block matrices Vc
XP and Ωc

XP, we have to calculate the expecta-

tion values of P̂i and the composite X̂i P̂j. We can easily obtain

V(~x|P̂i|~x)V =
θ

3
2

(2π)
3
2

∫
d3 p pi e−

θ
2~p

2
= 0 . (3.31)

In the same way as above, we go to the barred frame to calculate the expectation value of

the composite,

V(~x|{X̂i, P̂j}|~x)V = R̄−1
im R̄−1

jn V(~x|{ ˆ̄Xm, ˆ̄Pn}|~x)V , (3.32)

where V(~x| ˆ̄Xm
ˆ̄Pn|~x)V =

θ
3
2

(2π)
3
2

∫ ∫
d3 p̄ d3 p̄′e−

θ
4 (~̄p

2+~̄p′2) e−i(~̄p−~̄p′).~̄x p̄n(~̄p′| ˆ̄xm|~̄p).(3.33)
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Putting (3.21), (3.22) in the above equation (3.33) and then integrating, we obtain

V(~x|{ ˆ̄Xm, ˆ̄Pn}|~x)V =


0 −1 0

1 0 0

0 0 0

 . (3.34)

Using the expression of R̄ij in (2.29), and the fact that 〈P̂i〉 = 0 , we get the second block

matrices as

Vθ
XP =

1
2
〈{X̂i, P̂j}〉 =


0 − θ3

2θ
θ2
2θ

θ3
2θ 0 − θ1

2θ

− θ2
2θ

θ1
2θ 0

 and Ωθ
XP =

1
2
I3. (3.35)

Similarly, the third block matrices can be easily obtained as

Vθ
PX =

1
2
〈{P̂i, X̂j}〉 =


0 θ3

2θ − θ2
2θ

− θ3
2θ 0 θ1

2θ

θ2
2θ − θ1

2θ 0

 and Ωθ
PX = −1

2
I3. (3.36)

Finally, the last block matrices are easily obtained as

Vθ
PP =

1
2
〈{P̂i, P̂j}〉 − 〈P̂i〉〈P̂j〉 =

1
θ
I3 and Ωθ

PP = 03. (3.37)

With these (3.30),(3.35), (3.36) and (3.37), the complete non-commutative variance matrix Vθ

and symplectic matrix Ωθ are obtained as

Vθ =



θ
2 −

θ2
1

4θ − θ1θ2
4θ − θ1θ3

4θ 0 − θ3
2θ

θ2
2θ

− θ1θ2
4θ

θ
2 −

θ2
2

4θ − θ2θ3
4θ

θ3
2θ 0 − θ1

2θ

− θ1θ3
4θ − θ2θ3

4θ
θ
2 −

θ2
3

4θ − θ2
2θ

θ1
2θ 0

0 θ3
2θ − θ2

2θ
1
θ 0 0

− θ3
2θ 0 θ1

2θ 0 1
θ 0

θ2
2θ − θ1

2θ 0 0 0 1
θ


; Ωθ =

1
2



0 θ3 −θ2 1 0 0

−θ3 0 θ1 0 1 0

θ2 −θ1 0 0 0 1

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0


(3.38)
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The corresponding commutative variance matrix Vc and the symplectic matrix Ωc can be ob-

tained from the above respective non-commutative matrices by linear transformations (3.13)

[96] as

Vc =



θ
4 0 0 0 0 0

0 θ
4 0 0 0 0

0 0 θ
4 0 0 0

0 0 0 1
θ 0 0

0 0 0 0 1
θ 0

0 0 0 0 0 1
θ


and Ωc =

1
2



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0


. (3.39)

We then calculate the symplectic eigenvalues of Vc i.e. the ordinary eigenvalues of |2iΩ0V0|
[95] and obtain it as

(
1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2

)
i.e. 6-fold degenerate. These are the three pairs of sym-

plectic eigenvalues, each of the form of ( 1
2 , 1

2 ). This can be obtained simply from the corre-

sponding single mode of Vc: ( θ
4 , 1

θ ) (3.39), which occurs symmetrically in all the directions

x1, x2, x3, by a simple canonical transformation (x1, p1) → (λx1, 1
λ p1) for suitable λ 6= 0. In

any case it is simple to see that both Vθ (3.38) and Vc (3.39) satisfy the saturation condition

(3.10) (since det M = 1)

det Vθ = det V0 =
1
43 . (3.40)

This indicates that the Voros basis represents a maximally localized state in phase space. But

note that the Voros basis (2.43), can be factorized by going to the barred frame as

|~x)V =
( θ

2π

∫
d2 p̄ e−

θ
4 ( p̄2

1+ p̄2
2)ei p̄α( ˆ̄xα−x̄α)

)(√ θ

2π

∫
dp̄3e−

θ
4 p̄2

3 ei p̄3( ˆ̄x3−x̄3)
)

. (3.41)

Here, the first factor is the 2D Voros basis (2.18) and the second :
∫

dp̄3e−
θ
4 p̄2

3 ei p̄3( ˆ̄x3−~x3) ∼
e−

1
θ ( ˆ̄x3−x̄3)

2
represents a one-dimensional Gaussian state centered at x̄3 with a spread ∆X̄3 ∼√

θ. Clearly, this ∆X̄3 can be made as small as we like by a suitable scaling factor and scaling

up ∆P̄3 appropriately to preserve the saturation condition (obviously the resulting state is a

non-Voros one). Even if ∆X̄3 is squeezed to the extreme such that ∆x̄3 = 0 we can still have

∆X̄1∆X̄2 ≥ θ
2 for such a non-Voros state. More generally, we can write in this case

∆X̄1∆X̄2 + ∆X̄2∆X̄3 + ∆X̄3∆X̄1 ≥
θ

2
(3.42)

It is therefore quite interesting to see the form of analogous inequality in the original fiducial

frame for the Voros basis. Using ∆X̂i =

√
θ
2 −

θ2
i

4θ from (3.38), we have

∆X̂1∆X̂2 + ∆X̂2∆X̂3 + ∆X̂1∆X̂3 =
1
4θ

[√
(2θ2 − θ2

1)(2θ2 − θ2
2) +

√
(2θ2 − θ2

2)(2θ2 − θ2
3)

+
√
(2θ2 − θ2

1)(2θ2 − θ2
3)
]

(3.43)
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where the vector ~θ points in arbitrary direction. We can see that the expression (3.43) attains

its minimum value θ
2 (1 +

√
2) when the vector ~θ points in one of the three axes (e.g. θ =

θ3; θ1 = θ2 = 0). So we have the following condition

∆X̂1∆X̂2 + ∆X̂2∆X̂3 + ∆X̂1∆X̂3 ≥
θ

2
(1 +

√
2). (3.44)

Thus, there exist non-Voros states on which the space-space uncertainty is lower than that of

Voros states even though the phase-space uncertainty is saturated by the Voros states.

Finally, we would like to point out some subtle features of the commutative limit (θ → 0).

Firstly, note that one cannot take naively the commutative (θ → 0) limit in (3.38). Although

there is no problem in taking this limit in the block diagonal parts where Vθ
XX → 03 , Ωθ

XX →
03 and Vθ

PP → ∞ , Ωθ
PP → 03 as defined in (3.30) and (3.37), the off diagonal blocks Vθ

XP

and Vθ
PX do not vanish in this limit, where one is left with terms involving trigonometric

functions if one parametrizes ~θ as in (2.29). The source of this difficulty actually stems from

the fact that the Voros basis written in the barred frame (3.41) is constructed by taking

Fourier transform of a Gaussian state in momentum space which has the spread ∼ 1√
θ

i.e. in terms of the non-commutative parameter θ itself. Consequently, (3.34) which is the

expression of Vθ
XP in the barred frame turns out to be completely θ independent, whereas

the corresponding expression (3.32) in the unbarred fiducial frame is obtained by carrying

out SO(3) rotation (2.29) and thus leaving the trigonometric functions as remnants. Had we

considered momentum space wave function:

ψ(~p; α) =
1√
πα

e−
1

2α~p
2

, (3.45)

having a spread given by an independent parameter α - distinct from θ as was done in [96],

the corresponding variance matrix in two-dimensional space would have the form :

VXP =

 0 − θα
4

θα
4 0

 , (3.46)

which reduces to the corresponding 2× 2 diagonal block in (3.34) if α = 2
θ . One can now see

easily that the entire Vθ
XP matrix vanishes in the commutative (θ → 0) limit. It is therefore

convenient to take the commutative limit from (3.39) itself which is the variance matrix

for Xc − P space, where the off-diagonal block vanishes. Thus, in this commutative limit

∆X̂i → 0 and ∆P̂i → ∞. Finally, regarding the symplectic matrix (3.38), it has a well-defined

commutative limit as its value is independent of the state.



4
M U LT I - PA RT I C L E S Y S T E M O N 3 D M O YA L S PA C E

In this chapter, we discuss the extension of Hilbert-Schimdt operator formalism of non-

commutative quantum mechanics to multi-particle system. After carrying out the second

quantization by introducing basis independent field operators, we compute the thermal cor-

relation functions for a pair of free particles and then analyse the thermal effective potential

between the pair of particles.

4.1 two-particle syatem

In commutative quantum mechanics, we consider a two particle system in terms of wave-

functions defined over R 6 and therefore to think of classical configuration space as a ten-

sor product R 3 ⊗ R 3 . One may therefore be tempted to take the same approach in non-

commutative quantum mechanics and to introduce the non-commutative 3D configuration

space for a two particle system as a tensor product of two single particle configuration spaces,

i.e., H ( 2 )
c = H c ⊗ H c . The quantum Hilbert space being the space of operators generated

by the ~̂x 1 and ~̂x 2 , with the subscripts referring to the non-commutative coordinates of the

two particles. That is, the elements of the quantum Hilbert space are operators ψ (~̂x 1 , ~̂x 2 ) .

This is essentially the approach adopted in [97] where a Moyal-like star product between the

functions Ψ (~x 1 , ~x 2 ) and Φ (~x 1 , ~x 2 ) was introduced as

(Ψ ? Φ ) (~x 1 , ~x 2 ) = Ψ (~x 1 , ~x 2 ) e
i
2 θ i j (

←−
∂

∂ x 1 i
+
←−
∂

∂ x 2 i
) (

−→
∂

∂ x 1 j
+
−→
∂

∂ x 2 j
)

Φ (~x 1 , ~x 2 ) (4.1)

which yields the following commutation relations which was also obtained in the approach

of braided twisted symmetry [98]:

[ x̂ α i , x̂ β j ] = i θ i j ; where α , β are the particle labels. (4.2)

This is, however, a bit un-natural, as the x 1 component of one particle does not commute

with the x 2 component of second particle, and that too it is independent of their separation!

We therefor want to follow a different point of view by thinking of a two particle commuta-

tive system as two sets of 3D labels in the same 3D configuration space. We know that in

non-commutative quantum mechanics, the notion of coordinates does not exists in classical

37
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configuration space but arise through the state |ψ (~̂x ) ) or, operator ψ (~̂x ) acting on H c ,

and describes the quantum state of the system. For example, in 2D Moyal plane, the state

in quantum Hilbert space describing a single particle localized at z = ( x 1 + i x 2 ) /
√

2 θ

is given by | z , φ ) = | z 〉 〈 φ | ∈ H q ≡ H c ⊗ H ∗c , ∀ | φ 〉 ∈ H c . Such state | z , φ ) is an

eigenstate of B̂ (2.8), i.e. B̂ | z , φ ) = z | z , φ ) and it is a minimum uncertainty state. Thus,

the position measurement of the particle localized at z is insensitive to the right hand sector

| φ 〉 of the state | z , φ ) as discussed earlier (2.16) [99]. More explicitly, let us calculate the

Voros position representation of this state | z , φ ) ,

V(~x|z, φ) ≡ (w|z, φ) = e−
1
2 |z−w|2 e

1
2 (w̄z−wz̄)〈φ|w〉 ; where |~x)V ≡ |w) = |w〉〈w|. (4.3)

Setting ξ = w− z, we get

V(~x|z, φ) ≡ (w|z, φ) = e−
1
2 |ξ|2 e

1
2 (zξ̄−z̄ξ)〈φ|z + ξ〉. (4.4)

Clearly, the state |z, φ) is localized at z with non-local corrections deriving from an expansion

in ξ. Restoring dimensions, ξ is of the order
√

θ, demonstrating that the non-local corrections

are of the order of the length scale set by the non-commutative parameter. Keeping in mind

that |z, φ) is an operator on Hc, and therefore an element of the algebra generated by the x̂i,

it can be written in the form |z, φ) = |ψz,φ(~̂x)) ≡ |ψ~x,φ(~̂x)). Note that ~x is a label and ~̂x are

operators. The two particle state is now described as the tensor product state:

|~x1, φ1;~x2, φ2) = |ψ~x1,φ1(~̂x))⊗ |ψ~x2,φ2(~̂x)) = ψ~x1,φ1(~̂x)⊗ ψ~x2,φ2(~̂x). (4.5)

Thus, we retain the classical configuration space for multi-particle 3D non-commutative sys-

tem as H3
c but take the quantum Hilbert space of multi-particle non-commutative system as

the tensor product of single particle quantum Hilbert space:

H3
q
(2)

= H3
q ⊗H3

q 3 ψ~x1,φ1(~̂x)⊗ ψ~x2,φ2(~̂x) = ψ1(~̂x)⊗ ψ2(~̂x) . (4.6)

The single particle coordinates, which are operators on quantum Hilbert space H3
q
(2), are

given by ~̂X1 = ~̂X ⊗ 1q and ~̂X2 = 1q ⊗ ~̂X. It can be easily checked that the action of ~̂X1

(respectively ~̂X2) (or more precisely B̂1 = B̂ ⊗ 1q (respectively B̂2 = 1q ⊗ B̂) on the two-

particle state (4.5) returns the coordinates of the first (respectively second) particle as z1

(respectively z2).

To define the action of these two-particle states ψ1(~̂x) ⊗ ψ2(~̂x) ∈ H3
q
(2) on the classical

configuration space H3
c , let us recall the multiplication map m : H3

q ⊗H3
q → H3

q introduced

in (2.50) as

m[|ψ1(~̂x))⊗ |ψ2(~̂x))] = |(ψ1ψ2)(~̂x)). (4.7)
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With this, the quantum Hilbert space is endowed with the structure of an algebra [38]. Any

diffeomorphism symmetry and in particular the SO(3) symmetry in our case, should there-

fore correspond to the automorphism symmetry of this algebra. As mentioned already in

chapter 2, this automorphism symmetry of the algebra of states {ψ(~̂x)} is attained at the

cost of twisting the co-product of SO(3) rotation generators Ĵi as ∆θ( Ĵi) = F∆0( Ĵi)F−1, where

∆0( Ĵi) = Ĵi ⊗ I + I ⊗ Ĵi and F = e
i
2 θij P̂i⊗P̂j . That is,

Ĵi

[
m
(
|ψ1(~̂x))⊗ |ψ2(~̂x))

)]
= m

[
∆θ( Ĵi)

(
|ψ1(~̂x))⊗ |ψ2(~̂x))

)]
, (4.8)

where

∆θ( Ĵi) = ∆0( Ĵi) +
1
2

[
P̂i ⊗ (~θ · ~P)− (~θ · ~P)⊗ P̂i

]
. (4.9)

This forces us to twist the exchange operation Σ : H3
q ⊗H3

q → H3
q ⊗H3

q, where Σ : A⊗ B →
B⊗ A, to Σθ = F Σ F−1 as we found that

Σ[∆θ( Ĵi)(ψ1(~̂x)⊗ ψ2(~̂x))] 6= ∆θ( Ĵi)[Σ(ψ1(~̂x)⊗ ψ2(~̂x)]. (4.10)

This deformation of the exchange operation is essential because we must have [Σθ , ∆θ ] = 0.

Otherwise, under a transformation like rotation the statistics of the physical state can get al-

tered; a pure bosonic/fermionic state, obtained by projecting into symmetric/antisymmetric

subspace by the projector P± = 1
2 (I±Σ) will yield an admixture of bosonic/fermionic states

under rotation. But this cannot be allowed as implied by the super-selection rules which says

that a system of fermions or bosons should remain as the one under any transformation.

Thus, corresponding to this deformed exchange operator, the deformed projection operator

can be constructed as

P±θ =
1
2
(I ± Σθ) =

1
2

(
I ± eiθij P̂i⊗P̂j Σ

)
, since Σ F−1 = F Σ⇒ Σθ = F2Σ . (4.11)

We then obtain the twisted two-particle state as

|ψ1(x̂), ψ2(x̂))±θ = P±θ
(

ψ1(~̂x)⊗ψ2(~̂x)
)
=

1
2

[
ψ1(~̂x)⊗ψ2(~̂x)± eiθi j P̂i⊗P̂j(ψ2(~̂x)⊗ψ1(~̂x))

]
. (4.12)

We refer to P±θ as the twisted symmetric(+)/ antisymmetric(-) projection operator which give

the twisted symmetric/ antisymmetric states corresponding to twisted bosons/ fermions

system.
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4.2 multi-particle states

The construction of N-particle states proceed in complete analogy with the two particle

states. The quantum Hilbert space of N-particle non-commutative system will be given by

the following N-fold tensor product:

H3
q
(N)

= H3
q ⊗H3

q ⊗ .......⊗H3
q ⊗H3

q. (4.13)

The elements of H3
q
(N) are of the form:

|ψ~x1,φ1(~̂x))⊗ |ψ~x2,φ2(~̂x)) . . .⊗ |ψ~xN ,φN (~̂x)) = ψ1(~̂x)⊗ ψ2(~̂x) . . .⊗ ψN(~̂x). (4.14)

As before the multiplication map can be extended to arbitrary N-particle state by making

successive pair-wise composition and making use of the associative property of operator

products to get:

m

[
N

∏
a=1
⊗|ψa(~̂x))

]
= |(ψ1ψ2 . . . ψN)(~̂x)). (4.15)

The corresponding transformation property of multi-particle states ((4.14)) can be easily ob-

tained by making use of co-associativity of the co-product (see for example [100, 101]). The

twisted N-particle symmetric and antisymmetric states [26] can be constructed as

|ψ1, ψ2, ...., ψN)±θ = PN
±θ(ψ1 ⊗ ψ2 ⊗ ...⊗ ψN) (4.16)

We need to find the form of the deformed projection operator PN
±θ for N-particle system.

First of all, let us obtain the form of P3
±θ for 3-particle system. Here, we encounter with two

deformed nearest neighbor exchange operators: Σ12
θ = Σθ ⊗ 1 and Σ23

θ = 1⊗ Σθ acting on

H3
q ⊗ H3

q ⊗ H3
q, where Σ12

θ exchanges the first and the second slots keeping the third slot

fixed and Σ23
θ exchanges the second and the third slots keeping the first slot fixed. With this,

we can write the deformed projection operator for 3-particle physical states as

P3
±θ =

1
3!
[1 ± {Σ12

θ + Σ23
θ } (±1)2 {Σ12

θ Σ23
θ + Σ23

θ Σ12
θ } (±1)3 Σ12

θ Σ23
θ Σ12

θ ] (4.17)

where we should note that Σθ’s satisfy (Σ12
θ )2 = 1 = (Σ23

θ )2 and the braid equation:

Σ12
θ Σ23

θ Σ12
θ = Σ23

θ Σ12
θ Σ23

θ . (4.18)

In this way, for N-particle system we have (N − 1) deformed nearest neighbor exchange

operators Σn,n+1
θ , n = 1, 2....(N − 1), acting on H3

q
(N), which exchanges only the entries at

the nth and (n + 1)th slots, keeping all the entries at other slots fixed. That is,

Σn,n+1
θ = 1⊗ 1⊗ ....⊗ Σθ ⊗ ....⊗ 1⊗ 1, Σθ is at the nth position. (4.19)
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For an N-particle system, we have (Σn,n+1
θ )2 = 1, and the braid equation:

Σn,n+1
θ Σn+1,n+2

θ Σn,n+1
θ = Σn+1,n+2

θ Σn,n+1
θ Σn+1,n+2

θ . (4.20)

Thus, the deformed projection operator PN
±θ for N-particle system is given by

PN
±θ =

1
N!

N−1

∑
n=1

[1 ± Σn,n+1
θ (±1)2 Σn,n+1

θ Σn+1,n+2
θ (±1)3....(±1)N Σn,n+1

θ Σn+1,n+2
θ Σn+2,n+3

θ .....].(4.21)

Since Σθ = F2Σ = eiθij P̂i⊗P̂j Σ , so in the above expression we have a phase factor for each

deformed exchange operator. Thus in the last term of the above equation there are N phase

factors for N deformed exchange operators. Needless to say that (±1)N = ±, depending on

whether N is even or odd. In this way, we can define a twisted symmetric/ antisymmetric

state corresponding to the twisted bosons/fermions for N-particle system on the quantum

Hilbert space H(N)
q .

4.2.1 Momentum Basis on H3
q
(N)

Given a momentum basis |~p) ∈ H3
q, we can construct the twisted symmetric/antisymmetric

momentum basis on H3
q
(N) as

|~p1,~p2, .....,~pN)±θ = PN
±θ

(
|~p1)⊗ |~p2)⊗ .....⊗ |~pN)

)
. (4.22)

For simplicity, let us first consider the momentum basis on H3
q
(2):

|~p1,~p2)±θ = P±θ
(
|~p1)⊗ |~p2)

)
=

1
2

[
|~p1)⊗ |~p2)± eip2∧p1 |~p2)⊗ |~p1)

]
. (4.23)

where the wedge ‘∧’ between the momenta ~p1 and ~p2 simply denotes the following factor:

p2 ∧ p1 = θij p2i p1j. (4.24)

Because of the phase factor eip2∧p1 , these momentum states do not satisfy the orthogonality

condition:

±θ(~p′1,~p′2|~p1,~p2)±θ =
1
2
[δ3(~p′1 − ~p1)δ

3(~p′2 − ~p2)± eip2∧p1 δ3(~p′1 − ~p2)δ
3(~p′2 − ~p1)]. (4.25)

But satisfy the following completeness relation:∫
d3 p1d3 p2|~p1,~p2)θ θ(~p1,~p2| = 12

q. (4.26)
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In this way, we can write the twisted symmetric/antisymmetric momentum states as

|~p1, ..,~pn,~pn+1..,~pN)θ =
1

N!

N−1

∑
n=1

[|~p1)⊗ ..⊗ |~pn)⊗ |~pn+1)⊗ ..⊗ |~pN)

±eipn+1∧pn |~p1)⊗ ...⊗ |~pn+1)⊗ |~pn)⊗ ...⊗ |~pN)

(±1)2eipn+1∧pn eipn+2∧pn+1{|~p1)⊗ ..⊗ |~pn+2)⊗ |~pn)⊗ |~pn+1)⊗ ..⊗ |~pN)

+ |~p1)⊗ ..⊗ |~pn+1)⊗ |~pn+2)⊗ |~pn)⊗ ..⊗ |~pN)}............................
(±1)Neipn+1∧pn eipn+2∧pn+1 .........|~pN)⊗ ....⊗ |~pn+1)⊗ |~pn)⊗ ....⊗ |~p1)] . (4.27)

These states satisfy the following relations:

θ(~p′1,~p′2....,~p′N |~p1,~p2, ..,~pN)θ =
1

N!

(N−1)

∑
n=0

[δ3(~p′1 − ~p1)δ
3(~p′2 − ~p2)...δ3(~p′N − ~pN) (4.28)

±eipn+1∧pn{δ3(~p′1 − ~p1).........δ3(~p′n − ~pn+1).........δ3(~p′n+1 − ~pn).........δ3(~p′N − ~pN)}
(±1)2eipn+1∧pn eipn+2∧pn+1{δ(~p′1 − ~p1)........δ3(~p′n − ~pn+2)δ

3(~p′n+1 − ~pn)δ
3(~p′n+2 − ~pn+1)

.......δ3(~p′N − ~pN) + δ3(~p′1 − ~p1).............δ3(~p′n − ~pn+1)δ
3(~p′n+1 − ~pn+2)δ

3(~p′n+2 − ~pn)

................δ3(~p′N − ~pN)}+ ..............................(±1)Neipn+1∧pn eipn+2∧pn+1 ..................

×δ3(~p′1 − ~pN)δ
3(~p′2 − ~pN−1)............................................δ3(~p′N−1 − ~p2)δ

3(~p′N − ~p1)].

and ∫
d3 p1d3 p2....d3 pN |~p1,~p2...,~pN)θ θ(~p1,~p2....,~pN | = 1N

q . (4.29)

In addition to such non-orthogonal twisted symmetric/anti-symmetric momentum basis, we

can introduce a new momentum basis which is different from the twisted one by a phase

factor and it can be seen that such basis satisfies the orthonormality as well as completeness

relations. Explicitly, let us introduce this new momentum basis onH2
q
(2) as |~p1,~p2)) (denoted

henceforth by a “double ket"), given by

|~p1,~p2)) = e
i
2 p1∧p2 |~p1,~p2)±θ =

1
2
[e

i
2 p1∧p2 |~p1)⊗ |~p2)± e

i
2 p2∧p1 |~p2)⊗ |~p1)] , (4.30)

with the following relations:

((~p′1,~p′2|~p1,~p2)) =
1
2
[δ3(~p′1 − ~p1)δ

3(~p′2 − ~p2)± δ3(~p′1 − ~p2)δ
3(~p′2 − ~p1)] (4.31)

and ∫
d3 p1d3 p2 |~p1,~p2))((~p1,~p2| = 12

q. (4.32)
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This basis will be referred to as “quasi-commutative" basis as it is found to be symmetric

under the undeformed exchange operation Σ and so no notion of twisted statistics arises.

In the similar way we can define the new basis for 3-particle and so on as

|~p1,~p1,~p3))± =
1
3!
[e

i
2 (p1∧p2+p2∧p3+p1∧p3)|~p1)⊗ |~p2)⊗ |~p3)± e

i
2 (p2∧p1+p2∧p3+p1∧p3)|~p2)⊗ |~p1)⊗ |~p3)

±e
i
2 (p1∧p2+p3∧p2+p1∧p3)|~p1)⊗ |~p3)⊗ |~p2)(±1)2e

i
2 (p1∧p2+p3∧p2+p3∧p1)|~p3)⊗ |~p1)⊗ |~p2)

(±1)2e
i
2 (p2∧p1+p2∧p3+p3∧p1)|~p2)⊗ |~p3)⊗ |~p1)(±1)3e

i
2 (p2∧p1+p3∧p2+p3∧p1)|~p3)⊗ |~p2)⊗ |~p1)] ; (4.33)

where ,

|~p1,~p2,~p3)θ = e−
i
2 (p1∧p2+p2∧p3+p1∧p3)|~p1,~p1,~p3))± . (4.34)

These states satisfying the following orthogonality and completeness relations:

±((~p′1,~p′2,~p′3|~p1,~p2,~p3))± =
1
3!
[δ3(~p′1 − ~p1)δ

3(~p′2 − ~p2)δ
3(~p′3 − ~p3)± δ3(~p′1 − ~p2)δ

3(~p′2 − ~p1)δ
3(~p′3 − ~p3)

±δ3(~p′1 − ~p1)δ
3(~p′2 − ~p3)δ

3(~p′3 − ~p2)(±1)2δ3(~p′1 − ~p3)δ
3(~p′2 − ~p1)δ

3(~p′3 − ~p2)

(±1)2δ3(~p′1 − ~p2)δ
3(~p′2 − ~p3)δ

3(~p′3 − ~p1)(±1)3δ3(~p′1 − ~p3)δ
3(~p′2 − ~p2)δ

3(~p′3 − ~p1)] (4.35)

and ∫
d3 p1d3 p2d3 p3 |~p1,~p2,~p3))((~p1,~p2,~p3| = 13

q. (4.36)

In this way, we can get the symmetrized/anti-symmetrized quasi-commutative momentum

basis for any arbitrary number of particles which satisfy the usual orthogonality and com-

pleteness relations.

4.3 second quantization

The second quantization method allows to create and destroy particles in a quantum system

consisting of arbitrary number of indistinguishable particles. Let us consider the physical,

full quantum Hilbert space H3
Q which is just the direct sum of quantum Hilbert spaces with

all possible number of particle states:

H3
Q ≡ H3

q
(0) ⊕H3

q
(1) ⊕H3

q
(2) ⊕ ...⊕H3

q
(n) ⊕ ..... , (4.37)

where H3
q
(0) is the quantum Hilbert space with no particle and corresponds to the so called

vacuum state. Clearly, H3
q
(n) is the quantum Hilbert space with n-particles. We can then con-

struct the raising/lowering operators which act on H3
Q creating a particle : H3

q
(n) → H3

q
(n+1)

or destroying one: H3
q
(n) → H3

q
(n−1). We have seen that dealing with the momentum basis

on a particular quantum Hilbert space H3
q
(N) with N-particles makes it easier. Moreover,

we have two types of momentum basis in the multi-particle quantum system: the twisted

symmetric/anti-symmetric momentum basis and the quasi-commutative mometum basis.
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Following in the similar way as given in [102] for second quantization formalism of commu-

tative quantum mechanics, we construct the two types of creation and annihilation operators

in momentum space, corresponding to the above two types of momentum basis on H3
q
(N).

Note that these ladder operators on twisted momentum basis have already been introduced

on non-commutative quantum system on Moyal plane in [26, 97, 103, 104] where the use of

Moyal star product is involved. Here, we proceed without using any position basis at first.

We first construct the ladder operators in momentum basis, then the abstract ladder opera-

tors and at last we define the ladder operators in position basis. This will enable us to define

the multi-particle states at different positions.

4.3.1 Creation and Annihilation operators in twisted momentum basis

The twisted symmetrized/anti-symmetrized momentum basis on the full quantum Hilbert

space H3
Q resolves to the identity operator as

IQ =
∞

∑
n=0

1
n!

∫
d3 p1d3 p2....d3 pn|~p1,~p2, ....,~pn)±θ ±θ(~p1,~p2, ....,~pn|. (4.38)

The overlap of any two such basis states with different number of particles on HQ vanishes.

That is,

±θ(~p′1,~p′2, ...~p′N |~p1,~p2, ...~pM)±θ = δNM ±θ(~p′1,~p′2, ...~p′N |~p1,~p2, ...~pN)±θ . (4.39)

The creation and annihilation operators in this twisted momentum basis can then be defined

as

â‡(~p) =
∞

∑
n=0

1
n!

∫
d3 p1d3 p2....d3 pn |~p,~p1,~p2, ....,~pn)±θ ±θ(~p1,~p2, ....,~pn| ; (4.40)

and â(~p) =
∞

∑
n=0

1
n!

∫
d3 p1d3 p2....d3 pn |~p1,~p2, ....,~pn)±θ ±θ(~p,~p1,~p2, ....,~pn| . (4.41)

An arbitrary state on HQ containing N-particles can be created by the N-fold action of the

creation operators on the vacuum state as

|~p1,~p2, ...,~pN)±θ = â‡(~p1)â‡(~p2)....â‡(~pN)|0) ; |0) ∈ H3
q
(0)

. (4.42)

Note that any further action of the creation operator on an arbitrary state is taken as

â‡(~p) |~p1,~p2, ...~pN)±θ = |~p,~p1,~p2, ...,~pN)±θ . (4.43)
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Unlike the commutative quantum mechanics, the creation operator creating a new particle at

the first slot is different from creating a particle at the last slot as these twisted field operators

obey the deformed commutation relations:

â‡(~p) â‡(~p′) = ± eip′∧p â‡(~p′) â‡(~p) (4.44)

â(~p) â(~p′) = ± eip′∧p â(~p′) â(~p) (4.45)

and â(~p) â‡(~p′) = δ3(~p− ~p′)± eip∧p′ â‡(~p′) â(~p). (4.46)

These equations essentially reproduce the results obtained in [26, 97, 103, 104]. On the other

hand, the action of annihilation operator on an arbitrary state can be defined as

â(~p) |~p1,~p2, ...,~pN)θ =
N

∑
a=0

(±1)a−1 e
i
2 (p∧p1+...+p∧pa−1+p∧pa+1+...+p∧pn)δ3(~p−~pa)|~p1, ...~pa−1,~pa+1, ...,~pn)θ .

(4.47)

4.3.2 Creation and Annihilation operators in quasi-commutative mometum basis

Similarly, the symmetrized/anti-symmetrized quasi-commutative orthonormal basis |~p1,~p2, ....,~pn))

resolve to the identity operator on the full quantum Hilbert space H3
Q as

IQ =
∞

∑
n=0

1
n!

∫
d3 p1d3 p2....d3 pn|~p1,~p2, ....,~pn))((~p1,~p2, ....,~pn| , (4.48)

with the overlap between any two such states on HQ with distinct number of particles as

±((~p′1,~p′2, ...~p′N |~p1,~p2, ...~pM))± = δNM ±((~p′1,~p′2, ...~p′N |~p1,~p2, ...~pM))± . (4.49)

In an analogous way, we can construct the creation and annihilation operators in the quasi-

commutative momentum basis as

ĉ‡(~p) =
∞

∑
n=0

1
n!

∫
d3 p1d3 p2....d3 pn |~p,~p1,~p2, ....,~pn))((~p1,~p2, ....,~pn| ; (4.50)

and ĉ(~p) =
∞

∑
n=0

1
n!

∫
d3 p1d3 p2....d3 pn |~p1,~p2, ....,~pn))((~p,~p1,~p2, ....,~pn| , (4.51)

where these new operators are related to the ones of twisted basis (4.40, 4.41 ) as

â(~p) = ĉ(~p) e
i
2 piθ

ij P̂j and â‡(~p) = e−
i
2 piθ

ij P̂j ĉ‡(~p) . (4.52)

Here, P̂j is the total momentum. Note that similar expression also occurs in [26], but there

ĉ(~p) and ĉ‡(~p) stand for entirely commutative case (θ = 0), in contrast to ours, where θ-

dependence persists in their defining expressions (4.50, 4.51) through the quasi-commutative

basis. The fact that their (anti) commutation relations (see (4.53),(4.55) below) are just like
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their commutative (θ = 0) counterparts, which however develops θ-deformation in the

correlation function through deformed thermal wavelength in the more physical Voros ba-

sis, as will be shown subsequently, is the reason behind adopting the terminology “quasi-

commutative basis". The similar actions of these new creation/annihilation operators are

given by

|~p1,~p2, ...,~pN)) = ĉ‡(~p1)ĉ‡(~p2)....ĉ‡(~pN)|0) with ĉ‡(~p) |~p1,~p2, ...~pN)) = |~p,~p1,~p2, ...,~pN)) ;

and ĉ(~p) |~p1,~p2, ...,~pN)) =
N

∑
a=0

ηa−1δ3(~p− ~pa)|~p1, ...~pa−1,~pa+1, ...,~pn)).

We can easily verify that these field operators in quasi-commutative momentum basis obey

the usual (i.e. like θ = 0) (anti) commutation relations:

ĉ‡(~p) ĉ‡(~p′) = ± ĉ‡(~p′) ĉ‡(~p) (4.53)

ĉ(~p) ĉ(~p′) = ± ĉ(~p′) ĉ(~p) (4.54)

and ĉ(~p) ĉ‡(~p′) = δ3(~p− ~p′)± ĉ‡(~p′) ĉ(~p). (4.55)

Before we conclude this section, we would like to point out that a basis analogous to the

quasi-commutative basis (4.30) was also occurred earlier in the literature (see e.g. the first

formula of section 5 in [105]), by obtaining the images of the commutative (anti) symmetric

wave functions under the generalized Weyl map-which is nothing but a unitary transforma-

tion from commutative to non-commutative wave functions. The emergence of the commu-

tative (θ = 0) (anti) commutation relations (4.53-4.55) is therefore somewhat expected.

4.4 field operators

The abstract field operators, i.e. the basis independent ladder opeartors can be constructed

as

Ψ̂ ≡ Ψ̂(~̂x) =
∫

d3 p
(

â(~p)⊗ |~p)
)

and Ψ̂‡ ≡ Ψ̂‡(~̂x) =
∫

d3 p
(

â‡(~p)⊗ (~p|
)

. (4.56)

We should note that the first slot of tensor product is an operator acting on a particular

quantum Hilbert space H3
q
(n) to give an element of H3

q
(n−1)/H3

q
(n+1) corresponding to one

less or one more number of particles, while the second slot of the tensor product is the mo-

mentum eigenstate belonging to quantum Hilbert space H3
q. Thus, we can take the position

representations in Voros |~x)V (2.43) or Moyal |~x)M (2.46) bases of the field operators (4.56) as

Ψ̂‡(~xM/V) = Ψ̂‡(~̂x)
(

1⊗ |~x)M/V
)
=
∫

d3 p â‡(~p) (~p|~x)M/V ; (4.57)

and Ψ̂(~xM/V) =
(

1⊗ M/V(~x|
)

Ψ̂(~̂x) =
∫

d3 p â(~p) M/V(~x|~p). (4.58)
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We can clearly reproduce the momentum representations of the field operators (4.56) as the

ones we defined in (4.40)-(4.41):

Ψ̂‡(~p) = Ψ̂‡(~̂x)(1⊗ |~p)) =
∫

d3 p′ â‡(~p′) δ3(~p− ~p′) = â‡(~p) ; (4.59)

Ψ̂(~p) = (1⊗ (~p|)Ψ̂(~̂x) =
∫

d3 p′ â(~p′) δ3(~p− ~p′) = â(~p) (4.60)

Similarly for the new oscillators ĉ(~p) (4.50) and ĉ‡(~p) (4.51), we have the field operators

defined as

Ψ̂c ≡ Ψ̂c(~̂x) =
∫

d3 p
(

ĉ(~p)⊗ |~p)
)

and Ψ̂‡
c ≡ Ψ̂‡

c (~̂x) =
∫

d3 p
(

ĉ‡(~p)⊗ (~p|
)

(4.61)

with their actions defined in the analogous manner and the respective position and momen-

tum representations can be obtained as

Ψ̂‡
c (~xM/V) = Ψ̂‡

c (~̂x)
(

1⊗ |~x)M/V
)
=
∫

d3 p ĉ‡(~p) (~p|~x)M/V ; (4.62)

Ψ̂c(~xM/V) =
(

1⊗ M/V(~x|
)

Ψ̂c(~̂x) =
∫

d3 p ĉ(~p) M/V(~x|~p) ; (4.63)

Ψ̂‡
c (~p) = ĉ‡(~p) ; and Ψ̂c(~p) = ĉ(~p) . (4.64)

Thus, we can write the twisted and the quasi-commutative two-particle Voros/Moyal bases

with positions ~x1 and ~x2 on H3
q
(2) ∈ H3

Q:

|~x1,~x2)
V/M
±θ = Ψ̂‡(~xV/M

1

)
Ψ̂‡(~xV/M

2

)
|0) =

∫
d3 p1 d3 p2 (~p1|~x1)

V/M (~p2|~x2)
V/M |~p1,~p2)±θ ; (4.65)

|~x1,~x2))
V/M = Ψ̂‡

c
(
~xV/M

1

)
Ψ̂‡

c
(
~xV/M

1

)
|0) =

∫
d3 p1 d3 p2 (~p1|~x1)

V/M (~p2|~x2)
V/M |~p1,~p2)) . (4.66)

Let us remind the overlaps of the Voros/Moyal position basis with the mometum eigenstate

(2.45)/(2.48) as

(~p|~x)V =

(
θ

2π

) 3
4

e−
θ
4 p2

e−i~p.~x and (~p|~x)M =
1

(2π)
3
2

e−i~p.~x. (4.67)

Putting these, we have all the possible two-particle states with positions ~x1,~x2 and momenta

~p1,~p2 (in all position bases and momentum bases that we encounter in non-commutative

multi-particle system) as

|~x1,~x2)
V
±θ =

(
θ

2π

) 3
2 ∫

d3 p1 d3 p2 e−
θ
4 (~p

2
1+~p

2
2) e−i(~p1.~x1+~p2.~x2) |~p1,~p2)±θ ; (4.68)

|~x1,~x2)
M
±θ =

1
(2π)3

∫
d3 p1 d3 p2 e−i(~p1.~x1+~p2.~x2) |~p1,~p2)±θ ; (4.69)

|~x1,~x2))
V =

(
θ

2π

) 3
2 ∫

d3 p1 d3 p2 e−
θ
4 (~p

2
1+~p

2
2) e−i(~p1.~x1+~p2.~x2) |~p1,~p2)) ; (4.70)

|~x1,~x2))
M =

1
(2π)3

∫
d3 p1 d3 p2 e−i(~p1.~x1+~p2.~x2) |~p1,~p2)) ; (4.71)
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4.5 two-particle correlation function

In order to see the effects of such extension of non-commutative quantum mechanics to

many particle systems, let us consider a canonical ensemble of free gas. The application of

this pure operator formalism, where we encounter so many types of multi-particle states, can

be made vivid by calculating the two-particle correlation function for a free gas, consisting

of a pair of non-interacting particles:

C(~x1,~x2) =
1
Z
(~x1,~x2|e−βH |~x1,~x2) , where Z =

∫
d3~x1 d3~x2 (~x1,~x2|e−βH |~x1,~x2). (4.72)

That is, Z is the canonical partition function; β is the inverse of thermodynamical tempera-

ture T of the canonical system with the Boltzmann constant kB = 8.617× 10−5 eV.K−1; and

H is the non-relativistic Hamiltonian for a pair of free particles, each of mass m. That is,

β =
1

kBT
and H =

1
2m

(~p2
1 + ~p2

2) . (4.73)

The two-particle correlation function C(~x1,~x2) gives us the probability of finding a particle

at a position ~x1, given another particle at position ~x2. Thus, from the computation of this cor-

relation function in different bases, we can check the nature of the twisted fermions/bosons

and quasi-commutative fermions/bosons. It was found in [27] that the twisted fermions on

2D Moyal plane violates the Pauli exclusion principle. However, this result was obtained in

the framework where only Moyal star product is employed and the one which employed

the Voros star product is given in [106]. Thus, we compute this twisted two-particle corre-

lation function on 3D Moyal space using the pure operatorial methods of non-commutative

quantum mechanics, the Hilbert-Schimdt operator method. The difference between the two

position bases: Voros and Moyal, corresponding to the two star products, should also get

manifested from this computation. Moreover, we have defined another momentum basis

(quasi-commutative) on the non-commutative maulti-particle system which shows commu-

tative behaviour. So, from the computation of quasi-commutative two-particle correlation

function, we expect to recover the Pauli’s exclusion principle on non-commutative space.

4.5.1 Twisted correlation function

The twisted two-particle correlation functions for a canonical ensemble of a pair of free

particles on 3D Moyal space will be of the form:

Cθ(~x1,~x2) =
1

Zθ
±θ(~x1,~x2|e−βH |~x1,~x2)±θ , (4.74)

where Zθ is the non-commutative twisted partition function:

Zθ =
∫

d3~x1 d3~x2
V/M
±θ (~x1,~x2|e−βH |~x1,~x2)

V/M
±θ , (4.75)
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β is the same (4.73) and H is also the same, except for the notation of momenta:

H =
1

2m
(~P2

1 + ~P2
2 ) , (4.76)

as we denote observables of non-commutative quantum system by capital letters. Using the

completeness relation
∫

d3k1 d3k2 |~k1,~k2)±θ ±θ(~k1,~k2| = 12
q , we can write

Cθ(~x1,~x2) =
1

Zθ

∫
d3k1 d3k2 e−

β
2m (~k2

1+
~k2

2)
∣∣
±θ
(~x1,~x2|~k1,~k2)±θ

∣∣2. (4.77)

Let us take the twisted Voros (4.68) and Moyal (4.69) bases for the above position basis and

we then get followings after computation:

∣∣ V
±θ(~x1,~x2|~k1,~k2)±θ

∣∣2 =
1
2

(
θ

2π

)3

e−
θ
2 (
~k2

1+
~k2

2)
[
1± Re.

{
ei k2∧k1 e−i(~k1−~k2).(~x1−~x2)

}]
; (4.78)

∣∣ M
±θ(~x1,~x2|~k1,~k2)±θ

∣∣2 =
1
2

(
1

2π

)6 [
1± Re.

{
ei k2∧k1 e−i(~k1−~k2).(~x1−~x2)

}]
. (4.79)

We know that, on 3D Moyal space where θij has a dual vector θk, we can always perform

an SO(3) rotation, R̄ (2.29) on the classical configuration space H3
c . This rotation R̄ will

implement a unitary transformation on the single particle state |ψ) ∈ H3
q and the two-particle

state |ψ1)⊗ |ψ2) ∈ H3
q
(2) through the deformed co-product ∆θ(R̄) as

x̂i → ˆ̄xi = R̄i
j x̂j ⇒ |ψ) → |ψ)R̄ = U(R̄)|ψ) ; (4.80)

and |ψ1)⊗ |ψ2) → |ψR̄
1 )⊗ |ψR̄

2 ) = ∆θ(R̄)
(
|ψ1)⊗ |ψ2)

)
. (4.81)

Let us remind ourselves that ∆θ(R̄) = F ∆0(R̄) F−1 (2.57), where ∆0(R̄) = U(R̄)⊗U(R̄) is

the undeformed co-product and F = e
i
2 θij P̂i⊗P̂j is the Drinfeld twist. With this, we have

±θ(~x1,~x2|e−βH |~x1,~x2)±θ → ±θ(~̄x1, ~̄x2|e−βH |~̄x1, ~̄x2)±θ =±θ (~x1,~x2|
(

F U‡(R̄)⊗ U‡(R̄) F−1
)

× e−βH
(

F U(R̄)⊗ U(R̄) F−1
)
|~x1,~x2)±θ (4.82)

Since the Hamiltonian of free particle is H = 1
2m

(
~̂P⊗ I+ I⊗ ~̂P

)
, it commutes with the twist

F, i.e. [H, F] = 0. This implies that we can just take the factor e−βH on the left or right side

of F (4.82) and clearly we have(
F U‡(R̄)⊗ U‡(R̄) F−1

)(
F U(R̄)⊗ U(R̄) F−1

)
= I. (4.83)

Thus, there is overall no effect of rotation R̄ on the twisted two-particle correlation function

for a pair of free particle, as we have

±θ(~x1,~x2|e−βH |~x1,~x2)±θ = ±θ(~̄x1, ~̄x2|e−βH |~̄x1, ~̄x2)±θ , ∀ H : [H, F] = 0 . (4.84)
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With this, let us go back to the computation of twisted two-particle correlation functions in

Voros and Moyal bases. After the rotation R̄, we get θ1 = θ2 = 0 and θ3 = θ12 = θ. This

simplifies the phase factor: ei k2∧k1 in (4.78),(4.79) as

i k2 ∧ k1 = i θij k2i k1j = i θ k2x1 k1x2 ⇒ ei k2∧k1 = ei θ k2x1 k1x2 . (4.85)

Denoting the interparticle distance as~r = ~x1 −~x2 , we have

∣∣ V
±θ(~x1,~x2|~k1,~k2)±θ

∣∣2 =
1
2

(
θ

2π

)3

e−
θ
2 (
~k2

1+
~k2

2)
[
1± Re.

{
ei θ k2x1 k1x2 e−i(~k1−~k2).~r

}]
; (4.86)

∣∣ M
±θ(~x1,~x2|~k1,~k2)±θ

∣∣2 =
1
2

(
1

2π

)6 [
1± Re.

{
ei θ k2x1 k1x2 e−i(~k1−~k2).~r

}]
. (4.87)

Putting these in the expression of correlation functions, we get

CV
θ (~r) =

1
ZV

θ

1
2

(
θ

2π

)3 ∫
d3k1 d3k2 e−

(
β+mθ

2m

)
(~k2

1+
~k2

2)
[
1± Re.

{
eiθk2x1 k1x2 e−i(~k1−~k2).~r

}]
; (4.88)

CM
θ (~r) =

1
ZM

θ

1
2

(
1

2π

)6 ∫
d3k1 d3k2 e−

β
2m (~k2

1+
~k2

2)
[
1± Re.

{
eiθk2x1 k1x2 e−i(~k1−~k2).~r

}]
. (4.89)

In the following, we introduce the mean thermal wavelength λ =
√

2πβ
m ; and r⊥ =

√
r2

1 + r2
2

and r‖ = r3 representing the relative separations along the transverse and longitudinal direc-

tions respectively, as determined by the ~θ vector. After integrating the above equations, we

now obtain

CV
θ (~r) =

1
2ZV

θ

( 2πθ

λ2 + 2πθ

)3
[

1± 1

1 + 4π2θ2

(λ2+2πθ)2

exp

− 2πr2
⊥

(λ2 + 2πθ) + 4π2θ2

(λ2+2πθ)2

−
2πr2

‖
λ2 + 2πθ


]
(4.90)

CM
θ (~r) =

1
ZM

θ

1
2λ6

[
1± 1

1 + 4π2θ2

λ4

exp

{
− 2πr2

⊥
λ2 − 4π2θ2

λ2

+
2πr2

‖
λ2

}]
. (4.91)

The corresponding partition functions can be obtained as follows:

ZV
θ =

∫
d3~x1 d3~x2 CV

θ (~r) =
1
2

( 2πθ

λ2 + 2πθ

)3[
V2 ±V

(λ2 + 2πθ

2

) 3
2
]

; (4.92)

ZM
θ =

∫
d3~x1 d3~x2 CM

θ (~r) =
1

2λ6

[
V2 ±V

λ3

2
√

2

]
, (4.93)

where V is the volume of the system. In the thermodynamic limit V → ∞, we have

ZV
θ =

1
2

( 2πθ

λ2 + 2πθ

)3
V2 and ZM

θ =
1

2λ6 V2. (4.94)
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Putting these in the expressions for twisted correlation functions (4.90) and (4.91), in the

thermodynamic limit V → ∞, we finally obtain the twisted two-particle correlation functions

in Voros and Moyal bases as

CV
θ (~r) =

1
V2

[
1± 1

1 + 4π2θ2

(λ2+2πθ)2

exp

−2π

{
r2
⊥

(λ2 + 2πθ) + 4π2θ2

(λ2+2πθ)2

+
r2
‖

λ2 + 2πθ

}
]

; (4.95)

CM
θ (~r) =

1
V2

[
1± 1

1 + 4π2θ2

λ4

exp

{
−2π

{
r2
⊥

λ2 + 4π2θ2

λ2

+
r2
‖

λ2

}}]
. (4.96)

With this, we can now to discuss the above results. First of all, compare the two expres-

sions (4.95) and (4.96) of two-particle correlation functions respectively for twisted Voros

and Moyal basis. The two forms look exactly the same except for (λ2 + 2πθ) in Voros case

wherever λ2 is there in Moyal case. This extra term 2πθ arises from the Gaussian term

e−
θ
2~p

2
in Voros basis (2.43). This deformation of the mean thermal wavelength in Voros case,

λ2
V = (λ2 + 2πθ) , implies a natural cut-off in the mean thermal wave-length because of

the non-commutativity of space. Let us remind that in usual canonical system, the quan-

tum nature of particles with average interparticle distance r and mean thermal wavelength

λ =
√

2πβ
m is given by the condition that r ≤ λ where temperature T and mass m play the

dominant role. However, in the non-commutative system, specially when represented in the

Voros basis which is a physical position basis, we found that the non-commutative parameter

θ significantly contribute to this condition r ≤ λ 7→ r ≤ λV for determining the quantum

nature of particles. Clearly, the mean thermal wavelength for non-commutative space system

cannot be made smaller than
√

2πθ. This is an essential feature of the non-commutative space

where oscillations with wavelngth .
√

θ should be suppressed exponentially [38]. With this,

the relative distance r occurring in the expression (4.95) can only be regarded as the physical

distance a la Connes for the Voros case only. However, in both cases, there is a breaking of

SO(3) symmetry which can be attributed non-orthogonality of the twisted momentum basis

(4.25) which carries an extra phase factor eiθij p2i p1j because of the twist.

Now let us discuss the crucial parts of the results. Let us put r = 0 and take the ‘−’ sign

for fermions in the expressions (4.95) and (4.96). We then get

CV
θ (~r) =

1
V2

[
1− 1

1 + 4π2θ2

(λ2+2πθ)2

]
6= 0 ; CM

θ (~r) =
1

V2

[
1− 1

1 + 4π2θ2

λ4

]
6= 0, (4.97)

which implies that there is finite probability that two fermions can sit on top of the other.

This is the violation of Pauli exclusion principle. Note that in the commutative limit θ → 0

and the low temperature limit λ�
√

θ, we recover the commutative results [52].
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4.5.2 Quasi-commutative Basis

In quasi-commutative basis, we can write the two-particle correlation function as

Cc(~x1,~x2) =
1
Zc

∫
d3k1 d3k2 e−

β
2m (~k2

1+
~k2

2)
∣∣((~x1,~x2|~k1,~k2)))

∣∣2 , (4.98)

where in the Voros and Moyal bases, we have

∣∣ V((~x1,~x2|~k1,~k2))
∣∣2 =

1
2

(
θ

2π

)3

e−
θ
2 (
~k2

1+
~k2

2)
[
1± Re.

{
e−i(~k1−~k2).(~x1−~x2)

}]
; (4.99)

∣∣ M((~x1,~x2|~k1,~k2))
∣∣2 =

1
2

(
1

2π

)6 [
1± Re.

{
e−i(~k1−~k2).(~x1−~x2)

}]
. (4.100)

Putting these (4.99) and (4.100) in (4.98) for different position bases, we get the following

with same partition functions in the thermodynamic limit V → ∞ as

CV
c (r) =

1
Zc

1
2

( 2πθ

λ2 + 2πθ

)3 [
1± e−

2π
λ2+2πθ

r2]
and CM

c (r) =
1
Zc

1
2λ6

[
1± e−

2π
λ2 r2
]

, (4.101)

ZV
c =

1
2

( 2πθ

λ2 + 2πθ

)3
V2 and ZM

c =
1

2λ6 V2 . (4.102)

With this, our final expressions for the quasi-commutative two-particle correlation functions

look like

CV
c (r) =

1
V2

[
1± e−

2π
λ2+2πθ

r2]
and CM

c (r) =
1

V2

[
1± e−

2π
λ2 r2
]

. (4.103)

Again there is structural similarity between Moyal and Voros cases, except that in Voros

case, the mean thermal wavelength gets deformed as before. Moreover, the SO(3) symme-

try and Pauli’s exclusion principle are recovered. Note that the quasi-commutative two-

particle correlation function in Moyal basis is exactly the commutative two-particle corre-

lation function [52]. Hence, the unphysical nature of Moyal position basis regarding the non-

commutativity of configuration space is revealed again by the computation of two-particle

correlation function.

4.5.3 Thermal Effective Potential

We can then compute the effective potential for each case by putting the above expressions

in the relation V(~r) = −kBT ln C(~r). For the convenience of comparison, we recast these
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expressions in terms of the dimensionless variables ( r⊥
λ ), (

r‖
λ ), (

r
λ ) and ( θ

λ2 ), involving the

un-deformed thermal wavelength λ:

VV
θ (r⊥, r‖) = −kBT ln CV

θ

= −kBT ln

1 +
1{

1± 4π2 θ2

λ4

(1+2π θ
λ2 )

2

} e

−
{

2π

(1+2π θ
λ2 )

{
1+

4π2 θ2
λ4

(1+2π θ
λ2 )2

} r2
⊥

λ2 +
2π

(1+2π θ
λ2 )

r2
‖

λ2

}(4.104)

and VM
θ (r⊥, r‖) = −kBT ln CM

θ = −kBT ln

1± 1

1 + 4π2θ2

λ4

e
−
{

2π(
1+ 4π2θ2

λ4

) r2
⊥

λ2 +2π
r2
‖

λ2

} . (4.105)

For the quasi-commutative Moyal and Voros bases, we have

VV
c (r) = −kBT ln CV

c = −kBT ln

[
1± e

− 2π

1+2π θ
λ2

r2

λ2

]
; (4.106)

and VM
c (r) = −kBT ln CM

c = −kBT ln
[

1± e−2π r2

λ2

]
. (4.107)

The respective plots of the thermal effective potentials versus the interparticle distance r
λ

are given in the following by taking the value θ
λ2 = 0.1. Clearly, the these potential for

twisted cases behave differently from the commutative potential [52], which is exactly the

plot of VM
c (r). The difference is not significance for the twisted bosons from the usual bosons,

however, the behaviour of twisted fermions is in quite constrast to that of usual fermions.
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Figure 4.1: Thermal effective potential vs distance for θ
λ2 = 0.1 for each case in three-dimension. Note that,

in the twisted case, this depends functionally on r⊥ =
√

r2
x + r2

y and r‖, in contrast to quasi
commutative case, where it depends only on r.
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5
S P E C T R A L T R I P L E A N D C O N N E S ’ S P E C T R A L D I S TA N C E

Non-commutative geometry is the most generalized form of geometry which even take care

of discrete space and fractals as well [1] where the notion of points and paths are generalized

with the means of algebraic structures associated with the corresponding space.

5.1 spectral triple method of non-commutative geometry

As mentioned already, Connes’ approach to non-commutative geometry [54] replaces the no-

tion of a compact differentiable manifold by the spectral triple (A,H,D). This is given by an

involutive unital algebraA of operators acting on a Hilbert spaceH through a representation,

denoted say by π and a self-adjoint operator D in H with the conditions:

1. the resolvent (D − λ)−1 , λ /∈ Sp.D of D is compact (if A is non-unital corresponding

to a locally compact Hausdorff space, the condition is π(a)(D − λ)−1 , ∀ a ∈ A is

compact [107]),

2. the commutators [D, π(a)] are bounded, ∀ a ∈ A.

With this, D−1 (if 0 /∈ Sp.D) or, in general, (D − λ)−1 plays the role of infinitesimal ds and

the pure states of the algebra A play the role of points such that the generalized distance

between a pair of pure states ω and ω′ is given by

d(ω, ω′) .
= sup

a∈A

{
|ω(a)−ω′(a)| : ‖[D, π(a)]‖op ≤ 1

}
, (5.1)

called the spectral distance. This reduces to the usual geodesic distance between two points

on the commutative differentiable manifold.

A spectral triple is said to be even if there exists a self adjoint unitary operator called

grading or chirality operator γ onH which commutes with π(a), ∀ a ∈ A and anticommutes

with the Dirac operator D. Moreover, the spectral triple is said to be real if there exists an

antilinear isometry J : H → H such that the representation π0 of the opposite algebra

A0 = {a0 = Ja∗ J† : a ∈ A with product a0b0 = (ba)0} commutes with π(A). Moreover, J

should commute/anticommute with γ and D according to the KO-dimension [54, 90].

There are more axioms for the spectral triple to satisfy so that it gives a complete descrip-

tion of topological and geometrical properties of a general space. However, for the computa-
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tion of spectral distance these additional axioms are not necessary. The most important thing

about the spectral distance is the computation of the operator norm ‖[D, π(a)]‖op which is

usually difficult. This is the challenge we take up in this thesis. In a spectral triple, it is the

Dirac operator which gives the geometric information and hence plays an important role in

studying the metric properties of the given C∗-algebra.

To understand the spectral triple formalism in a better way, let us consider the commu-

tative spin geometry. Then we will go through the non-commutative generalization of spin

manifold by introducting an spectral triple and compare the geometric properties.

5.2 spin geometry

In this section, we are reviewing the definition of a spin manifold and its corresponding

Dirac operator. Here, we provide a brief outline of the spin geometry given in [90, 91, 108].

5.2.1 Clifford algebras

A real vector space V is said to be equipped with a nondegenerate symmetric bilinear form

g if we have

g : V ×V → R ; g(u, v) = g(v, u) ∀ u, v ∈ V . (5.2)

We can then define a real Clifford algebra Cl(V) over V as an associative algebra generated

by V where the Clifford product ‘.’ is subjected to the relation:

u.v + v.u = 2g(u, v) ∀ u, v ∈ V. (5.3)

As a vector space, this Clifford algebra Cl(V) is isomorphic with the exterior algebra Λ(V)

with the exterior product ‘∧’ subject to the relation: u ∧ v + v ∧ u = 0 , ∀ u, v ∈ V and

dim(Cl(V)) = dim(Λ(V)) = 2n if dim(V) = n.

Given a unital real algebra A and f : V → A a real linear map satisfying [ f (v)]2 =

g(v, v).IA , ∀ v ∈ V, we have a unique algebra homomorphism f̃ : Cl(V)→ A. If A = Cl(V),

then the linear map v→ −v on V extends to an automorphism χ ∈ Aut(Cl(V)), given by

χ(v1.....vn) := (−1)nv1.....vn , satisfying χ2 = idA. (5.4)

This χ gives the Z2-grading spliting of Cl(V) into an even subalgebra (which consists of

all linear combination of Clifford product of an even number of elements of V) and odd

subspace:

Cl(V) = Cl(V)+ ⊕ Cl(V)− , where Cl(V)± denotes the (±)-eigenspace of χ. (5.5)
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Complexification of Clifford algebras Cl(V) is obtained by complexifying the vector space

V as VC = V ⊕ iV extending the symmetric bilinear form g on V as g(u1 + iv1, u2 + iv2) =

g(u1, v1)+ ig(u1, v2)+ ig(v1, u2)− g(v1, v2) on VC. Thus, the complex Clifford algebra Cl(V) =

Cl(V)⊗R C over V is an associative algebra generated by VC with the Clifford product ‘.’,

subjected to the relation: u.v + v.u = 2g(u, v) ∀ u, v ∈ VC. Such complex Clifford algebras

Cl(V) are found to be isomorphic to the matrix algebras as

Cl(V) ∼=

M2m(C) if dim.V = n = 2m, even;

M2m(C)⊕M2m(C) if dim.V = n = 2m + 1, odd.
(5.6)

The relationship between the two copies of M2m(C) for odd n is clarified by the introduction

of the chirality element:

γ = (−1)m e1.....en ; with either n = 2m or n = 2m + 1 and m =
[n

2

]
, (5.7)

where {ei} is an orthonormal basis of V. We can regard a matrix algebra M2m(C) as the

space of endomorphisms of an 2m-dimensional complex vector space S. Thus, we have the

following isomorphisms:

Cl(V) ∼=

End(S) if dim.V = n = 2m, even;

End(S+)⊕ End(S−) if dim.V = n = 2m + 1, odd,
(5.8)

where S, S+, S− are 2m-dimensional complex vector spaces. This yields a representation of

the Clifford algebra Cl(V) on the spinor space S for even n and S = S+⊕ S− for odd n, given

by c : Cl(V) → End(S). With this, we can define the Clifford multiplication in Cl(V) as a

map ĉ : Cl(V)⊗ S→ S.

5.2.2 Spin Manifold

Let us consider an n-dimensional differentiable manifold M with a metric g = gµν dxµ ⊗ dxν.

Then we have the tangent space Tx M and co-tangent space T∗x M which are vector spaces

at each point x ∈ M, equipped with the symmetric bilinear forms as g(x) and g−1(x) re-

spectively. We can then define real Clifford algebras Cl(T∗x M) over each point x ∈ M of the

manifold. We can complexify our co-tangent spaces T∗x M so that we get the complex Clifford

algebras Cl(T∗x M). The Clifford bundle Cl(M) → M is then defined as the bundle of com-

plex Clifford algebras generated by the co-tangent bundle T∗M → M with the symmetric

bilinear form g−1 and is denoted by

Cl(M) := Cl(T∗M) =
⋃

x∈M

Cl(T∗x M). (5.9)
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At each point x ∈ M, the Clifford algebra Cl(T∗x M) has a representation on a spinor space

Sx. Even though all these Clifford algebras Cl(T∗x M) at every point x ∈ M join to form the

Clifford bundle, one question arises whether these spinor spaces Sx at every point x ∈ M

join to form an appropriate vector bundle. The answer is in affirmative iff they satisfy certain

conditions. Let A := C(M) represents an algebra of continuous functions on M and the space

of sections of the Clifford bundle be

B :=

Γ(M,Cl(T∗M)) , n = even;

Γ(M,Cl+(T∗M)) , n = odd.
(5.10)

Let A and B denote the restrictions of A and B to smooth functions and smooth sections

respectively. The spinor spaces Sx at each point x ∈ M can then be joined to form a vector

bundle called spinor bundle S if the Dixmier-Douady class δ(B)1 and the second Stiefel-

Whitney class κ(B) both vanish identically [90, 91]. The manifold satisfying these conditions

is called a spin manifold. If M is a spin manifold without boundary M, we can define the

spinor module as the B-A−bimodule S := Γ(M, S) such that the vector space Sx ∼= S at

each point x ∈ M is an irreducible representation of the Clifford algebra Bx ∼= Cl(T∗x M).

Therefore, any spinor module S has a partner S ] = HomA(S , A) such that S ⊗A S ] ' B

and S ] ⊗B S ' A. Note that S ] ' Γ(M, S∗) where S∗ → M is the dual vector bundle

to the spinor bundle S → M. Given a complex vector bundle E → M and the space of

sections E := Γ(E) is equipped with the C∞(M)-bilinear form gE : E ⊗ E → C∞(M), we

can define a C∞(M)-valued Hermitian pairing (s|t) = gE(s∗, t) , ∀ s, t ∈ E with the scalar

product on E as 〈s|t〉 =
∫

M(s|t)vg , where vg is the volume form on M. With such scalar

product 〈s|t〉, the square-integrable spinors form a Hilbert space L2(M, S) as the completion

of {ψ ∈ S = Γ(M, S) ; 〈s|t〉 < ∞} in the norm ‖ψ‖ =
√
〈ψ|ψ〉 , ∀ ψ ∈ S . Then, there is a

B-A− bimodule isomorphism S ] ' S if and only if there is an antilinear endomorphism C

of S which becomes antiunitary operator called the charge conjugation on the Hilbert space

completion L2(M, S) of S .

5.2.3 Spin Connection

A connection ∇E on a vector bundle E → M with smooth sections E = Γ(M, E) is a linear

map ∇E : E → A1(M)⊗A E , where A1(M) = Γ(M, T∗M), satisfying the Leibniz rule,

∇E(σ f ) = ∇E(σ) f + σ⊗ d f , ∀ σ ∈ E , f ∈ A = C∞(M) ; d is the exterior derivative. (5.11)

We can equivalently define a map ∇E
X : X(M)⊗ E → E called covariant derivative, which

includes a vector field X ∈ X(M) satifying the Leibniz rule:∇E
X(σ f ) = ∇E

X(σ) f + σX( f ). If

1 B denotes the collection of fibres: B :=

{Bx = Cl(T∗M) : x ∈ M}, if dim.M is even

{Bx = Cl+(T∗M) : x ∈ M}, if dim.M is odd
which is locally trivial.
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E = X(M) = Γ(M, TM), then the connection which is torsion-free: ∇XY −∇YX − [X, Y] =

0, ∀ X, Y ∈ X(M) and compatible with the metric g: g(∇ZX, Y) + g(X,∇ZY) = Z(g(X, Y))

is called the Levi-Civita connection ∇g. The dual connection on the co-tangent bundle T∗M

with smooth sections A1(M) is referred to as the Levi-Civita connection on 1-forms and is

also denoted by ∇g. If E , which is an A-module, is equipped with an A-valued Hermitian

pairing (.|.) then the connection ∇ is said to be Hermitian if (∇s|t) + (s|∇t) = d(s|t).
To define the connection2 on the spinor bundle S with the finitely generated projective

spinor module S = Γ(M, S), let us extend the Clifford multliplication ĉ : Bx ⊗ Sx → Sx to

the spinor module S which carries an action of B as

ĉ(b⊗ ψ)(x) = ĉ
(
b(x)⊗ ψ(x)

)
, ∀ b ∈ B and ψ ∈ S ⇔ ĉ(b⊗ ψ) = c(b)ψ. (5.12)

Using the inclusion A1(M) ↪→ B, we can define a map ĉ : A1(M) ⊗A S → S . In odd

dimensional case, B consists of only even elements and the inclusion is given by c(α) :=

c(αγ) , ∀ α ∈ A1(M). On a local basis dxµ of A1(M), let us introduce γµ := c(dxµ).

The spin connection on the spinor bundle S → M is a Hermitian connection ∇S : S →
A1(M)⊗A S which is compatible with the action of B in the following way

∇S(c(α)ψ) = c(∇gα)ψ + c(α)∇Sψ , ∀ α ∈ A1(M), ψ ∈ S ; (5.13)

where ∇g is the Levi-Civita connection on A1(M) and ∇S
XC = C∇S

X, where ∇S
X : X(M)⊗

S → S , for real X ∈ X(M).

The Dirac operator /D : S → S is a first-order partial differential operator associated to

the spin connection ∇S as

/D := −iĉ ◦ ∇S , where S ∇S
−→ A1(M)⊗A S ĉ−→ S . (5.14)

In local coordinates, where the spin connection is given locally as ∇S = dxµ ⊗ ∇S
µ , by

applying the Clifford multiplication ĉ on dxµ we can locally write the Dirac operator as

/D = −iγµ∇S
µ , where ∇S

µ = ∂µ +
1
2

ωab
µ γaγb. (5.15)

Note that ∇g
µea = ωb

µaeb where {ea} is the local veilbein such that c(ea) = γa.

5.3 connes’ spectral triple of a compact spin manifold

Given a compact orientable Riemannian spin manifold (M, g), we can define the following

spectral triple:

(
A = C∞(M),H = L2(M, S), /D = −iγµ∇S

µ

)
. (5.16)

2 the lift of the Levi-Civita connection
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The action π of A on H is defined through the pointwise multiplication : (π(a)ψ)(x) =

a(x)ψ(x), ∀ a ∈ A, ψ ∈ H.

The pure states of A are the evaluations at points: δx(a) = a(x) and the commutator

[ /D, π(a)] can be obtained as

[ /D, π(a)] = −iĉ
(
∇S(aψ)

)
+ iaĉ(∇Sψ)

= −iĉ{a∇Sψ + da⊗ ψ}+ iaĉ(∇Sψ) , where ĉ(a) = a

= −iĉ(da)ψ , ∀ ψ ∈ H.

Thus, [ /D, π(a)] = −iĉ(da) = −iγµ∂µa so that its operator norm is

‖[ /D, π(a)]‖2 = sup
x∈M
‖cx
(
da(x)

)
‖2 = sup

x∈M
‖γµ∂µa‖2; ‖γµ∂µa‖2 = (γµ∂µa|γν∂νa), (5.17)

where (γµ∂µa|γν∂νa) = (∂µa)∗∂νa g−1(γµ, γν
)
= ∂µa∗∂νa gµν = ‖grad a|x‖2, where g−1 is the

symmetric bilinear form on T∗M and grad a|x ∈ X(M) is the gradient of a ∈ C∞(M) at point

x ∈ M. That is,

‖[ /D, π(a)]‖2 = sup
x∈M
‖cx
(
da(x)

)
‖2 = sup

x∈M
‖grad a|x‖2 = ‖grad a‖2

∞. (5.18)

Now the Connes’ spectral distance formula between two pure states δx and δy is given by

d /D(δx, δy) = sup
a∈A

{
|δx(a)− δy(a)| : ‖[ /D, π(a)]‖ ≤ 1

}
= sup

a∈A

{
|a(x)− a(y)| : ‖grad a‖∞ ≤ 1

}
. (5.19)

Let us introduce a curve λ : [0, 1] → M such that λ(0) = x and λ(1) = y. We define the

geodesic distance between two points x and y on the Riemannian manifold (M, g) as

dgeo(x, y) = inf
λ∈M
{length of curve λ from x to y} = inf

λ∈M

∫ 1

0

√
gµνdxµdxν. (5.20)

Let us now see how the Connes’ spectral distance between two pure states δx and δy reduces

to the geodesic distance between two points x and y. Clearly, we can write

|a(x)− a(y)| = |a(λ(0))− a(λ(1))| =
∣∣∣ ∫ 1

0

d
dt
{a(λ(t))}dt

∣∣∣ = ∣∣∣ ∫ 1

0
grad a|λ(t)λ̇(t)dt

∣∣∣. (5.21)

Since
∣∣∣ ∫ 1

0 grad a|λ(t)λ̇(t)dt
∣∣∣ ≤ ∫ 1

0 |grad a|λ(t)|λ̇(t)|dt ≤ ‖grad a‖∞
∫ 1

0 |λ̇(t)|dt, we get

|a(x)− a(y)| ≤ ‖grad a‖∞ {Length of λ from x = λ(0) to y = λ(1)}. (5.22)
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Thus we can see that the Connes’ spectral distance is bounded above by the geodesic distance

as

d /D(δx, δy) = sup
a∈A

{
|a(x)− a(y)| : ‖grad a‖∞ ≤ 1

}
≤ dgeo(x, y). (5.23)

To prove that this inequality gets saturated for some a ∈ C∞(M) such that Connes’ spectral

distance is indeed a geodesic distance on a Riemannian spin manifold, we first note that

our search here can be restricted to real functions only [110]. We therefore introduce some

function a′p(x) = dgeo(x, p) for a fixed given point p ∈ M. We know that the geodesic distance

function saturates the triangle inequality: |a′p(x) − a′p(y)| ≤ dgeo(x, y) for p lying on the

geodesic connecting the points x and y and ‖grad a′p‖∞ = ‖[ /D, π(a′p)]‖ = 1. This implies

that a′p(x) = dgeo(x, p) ∈ A saturates the inequality (5.23). Hence, the Connes’ spectral

distance between two pure states δx and δy for the commutative spectral triple (5.16) gives

the geodesic distance between two points x and y of the manifold M:

d /D(δx, δy) = dgeo(x, y). (5.24)

5.4 spectral distance on real line R1

x

f(x0)

f(y0)

x0 y0

Figure 5.1: Computation of Connes’ spectral distance in 1D

To illustrate the ideas perhaps in the simplest possible way, let us consider a “down-

to-earth” example of the 1D real line, where the spectral triple is (A = C∞
0 (R1),H =

L2(R1),D = −i d
dx ) with the action of A on H: (π( f )ψ)(x) = f (x)ψ(x), ∀ ψ ∈ L2(R1),

we have the commutator [D, π( f )]ψ = −i
(

d f
dx

)
ψ yielding the ball condition ‖[D, π( f )]‖ =
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∥∥ d f
dx

∥∥ ≤ 1. The pure states of f ∈ A are just evaluations at point x ∈ R1: δx( f ) = f (x). The

Connes’ spectral distance in 1D real space R1 is then given by

d(δx, δy) = sup
f∈A

{
|δx0( f )− δy0( f )| : ‖[D, π( f )]‖ ≤ 1

}
= sup

f∈A

{
| f (x0)− f (y0)| :

∥∥∥d f
dx

∥∥∥ ≤ 1
}
= |x0 − y0| . (5.25)

In the spirit of Gelfand and Naimark [55], this can be regarded as the distance between the

points x and y.

Note that ∀ f ∈ C∞
0 (R1), as shown in fig. 5.1, the ball condition

∥∥ d f
dx

∥∥ ≤ 1 chooses those

functions for which the slope
∣∣ d f

dx

∣∣ ≤ 1 such that the supremum of the difference of the

functions is bounded by the distance between the points at which the functions are evaluated.

The functions which saturate this bound are f (x0) = ±x0 + k, where k is some constant.

5.5 spectral distance on two-point space , a discrete space [107 , 109]

Now, let us consider the simplest example of finite space which is the space consisting of

only two points X2 = (a, b). For this space, the algebra is A2 = C⊕ C with the elements f

which are given by a pair of complex numbers f (a) and f (b) which are the evaluations of

the function f ∈ A2 at the points a, b. A pair f1 and f2 of such functions necessarily satisfy

[107]

( f1 f2)(a) = f1(a) f2(a) , ( f1 f2)(b) = f1(b) f2(b) . (5.26)

Clearly, A2 can be written as the diagonal sub-algebra of A2 and itself can be defined to be

the representation π of f ∈ A2 which in turn acts on H2, taken to be also as C2 as,

f

λ1

λ2

 = π( f )

λ1

λ2

 =

 f (a) 0

0 f (b)

λ1

λ2

 ,

λ1

λ2

 ∈ C2 ≡ H2 . (5.27)

The Dirac operator can be taken as an off-diagonal matrix [109]:

D2 = D†
2 =

 0 Λ

Λ̄ 0

 , Λ ∈ C . (5.28)

The commutator [D2, π(a)] = ( f (a) − f (b))

 0 Λ

−Λ̄ 0

 such that the operator norm is

‖[D2, π(a)]‖ = | f (a) − f (b)||Λ|. The spectral distance between these two pure (normal)

states ωa( f ) = Tr
{

ρaπ( f )
}
= f (a) and ωb( f ) = Tr

{
ρbπ( f )

}
= f (b) representing the two
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points a and b on X2 in terms of the associated density matrices ρa =

1

0

(1 0
)
=

1 0

0 0


and ρb =

0

1

(0 1
)
=

0 0

0 1

 is given by

dD2(ω1, ω2) = sup
a∈A2

{
| f (a)− f (b)| : | f (a)− f (b)||Λ| ≤ 1

}
=

1
|Λ| . (5.29)

If Λ = 0, then the spectral distance becomes infinite.

5.6 spectral distance on the state space CP1
of M2 (C) [82 , 110]

Let us now consider a non-commutative spectral triple i.e., for which the algebra is non-

commutative. This is perhaps the simplest example of non-commutative spectral triples

where the algebra is the algebra of complex 2 × 2 matrices :

A = M2 (C) , H2 = C2 , D2 =

 0 Λ

Λ̄ 0

 = |Λ |
 0 e iλ

e− iλ 0

 ; Λ = |Λ |e iλ . (5.30)

The Dirac operator D2, being a Hermitian matrix, can be brought to a diagonal form:

DU
2 = U †D2 U =

−|Λ | 0

0 |Λ |

 =

D1 0

0 D2

 ; where U =
1√
2

 1 e iλ

−e− iλ 1

 .

(5.31)

Clearly, D1 = −|Λ | and D2 = |Λ | are the real and distinct eigenvalues of D .

Now any normalized vector χ =

χ1 = x1 + i x2

χ2 = x3 + i x4

 ∈ C2 with the normalization con-

dition χ† χ = |χ1 |2 + |χ2 |2 = 1 can be used to define a map ω : M2 (C) → C such

that ∀ a ∈ M2 (C) , a 7→ χ† aχ. Such maps w(a) = χ† aχ ∈ C are referred to as

the vector states of a ∈ M2 (C) and are gauge invariant under the U (1) transformation

χ → χ ′ = e iθ χ. This implies that the space of vector states S (M2 (C)) ' CP1. Then

choosing a local gauge, say χ2 = χ∗2 = x3, the above normalization condition χ† χ = 1

reduces from S3 (x2
1 + x2

2 + x2
3 + x2

4 = 1) to S2 (x2
1 + x2

2 + x2
3 = 1) so that we can identify

CP1 ' S2. We can then use the local parametrization χ =

sin θ
2 e iφ

cos θ
2

 with the further

association of χ ∈ C P1 to ~x ∈ S2 satisfying ~x2 = 1 where the respective components are

x1 = sin θ cos φ , x2 = sin θ sin φ , x3 = cos θ .
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We can now associate a density operator ρ on S (M2 (C)) as ρ = χχ† so that we can

define the normal state on the algebra M2 (C) as ωρ (a) = Tr(ρa). The spectral distance

between two normal states can then be written as

dD2 (ωρ ′ , ωρ ) = sup
a∈M2 (C)

{|ωρ ′ (a) − ωρ (a) | : ‖ [D2 , π (a)]‖op ≤ 1} . (5.32)

It is shown in [110] that the above supremum value will be attained by the positive and

hermitian elements of algebra. This implies that we can restrict our search to the subset of

positive and hermitian elements only. And since such elements remain so after a unitary

transformation like (5.31). Parametrising this as a → U†aU ≡ aU =

a11 a12

a∗12 a22

, we get the

simplified commutator as

[D2, π(a)] U−→ [DU
2 , π(aU)] = (D1 − D2)

 0 a12

−a∗12 0

 . (5.33)

Clearly, the ball condition gives the following bound on the off-diagonal elements of aU only

‖[D2, π(a)]‖op = ‖[DU
2 , π(aU)]‖op = |a12||D1 − D2| ≤ 1 ⇒ |a12| ≤

1
|D1 − D2|

, (5.34)

leaving the diagonal elements a11 and a22 completely unconstrained. This can result in diver-

gent distances between certain pair of states, as we shall see.

Now, to find the difference between two normal states ωρ′(a) and ωρ′(a) with the density

operators ρ′ and ρ respectively, let us introduce ∆ρ = ρ′− ρ which can be written as a matrix

∆ρ = χ′χ′† − χχ† =

χ′1χ′∗1 − χ1χ∗1 χ′1χ′∗2 − χ1χ∗2

χ′2χ′∗1 − χ2χ∗1 χ′2χ′∗2 − χ2χ∗2

 . (5.35)

We then have

|ωρ′(a)−ωρ(a)| = |Tr(∆ρ a)| =
∣∣∣ 2

∑
i,j=1

(χ′iχ
′∗
j − χiχ

∗
j )aij

∣∣∣ =
∣∣a11(|χ′1|2 − |χ1|2) + a22(|χ′2|2 − |χ2|2)

+ 2Re.
{

a12(χ
′
1χ′∗2 − χ2χ∗1)

}∣∣. (5.36)

To proceed further, we parametrize χ and χ′ as χ =

χ1 = sin θ
2 eiϕ

χ2 = cos θ
2

 and χ′ =

χ′1 = sin θ′
2 eiϕ′

χ′2 = cos θ′
2

.

With this, the computation of the spectral distance can be carried on for two different cases:

1. Distance between a pair of states with different lattitudes:
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Here, θ 6= θ′ so that |χ′1|2 6= |χ1|2 and |χ′2|2 6= |χ2|2. Since the spectral distance is the

supremum of (5.36) with the condition (5.34), which imposes no bound on a11 and a22

and hence the spectral distance between two points lying on different lattitudes on S2

with the Dirac operator D2 diverges.

2. Distance between a pair of states lying on the same lattitude:

Here, |χ′1|2 = |χ1|2 and |χ′2|2 = |χ2|2 so that (5.36) reduces to

|ωρ′(a)−ωρ(a)| = |Tr(∆ρ)| = |2Re.
{

a12(χ
′
1χ′∗2 − χ2χ∗1)

}∣∣ , (5.37)

which depends on just a12, as the diagonal entries a11 and a22 get eliminated.

Taking a12 = |a12|eiα, we get

a12(χ
′
1χ′∗2 − χ2χ∗1) = |a12| cos

θ

2
sin

θ

2
(eiϕ′ − e−iϕ)eiα. (5.38)

Choosing α = 1
2 (π + ϕ− ϕ′), we can write

a12(χ
′
1χ′∗2 − χ2χ∗1) = |a12| cos

θ

2
sin

θ

2
i
(

e
i
2 (ϕ′−ϕ)− e−

i
2 (ϕ′−ϕ)

)
= −|a12| sin θ sin

( ϕ′ − ϕ

2

)
,

(5.39)

which take real values. Thus, we have using (5.34),

|ωρ′(a)−ωρ(a)| = |Tr(∆ρ)| = 2|a12|| sin θ|
∣∣∣ sin

( ϕ′ − ϕ

2

)∣∣∣ ≤ 2 sin θ

|D1 − D2|
∣∣∣ sin

( ϕ′ − ϕ

2

)∣∣∣.
(5.40)

Hence, the spectral distance between a pair of points (θ, ϕ) and (θ, ϕ′) lying on the

same latitude of CP1 ≈ S2 or more precisely between the associated states ωρ′ and ωρ

is obtained as

dD2(ωρ′ , ωρ) =
2 sin θ

|D1 − D2|
∣∣∣ sin

(φ− φ′

2

)∣∣∣ = sin θ

|Λ|
∣∣∣ sin

(φ− φ′

2

)∣∣∣ . (5.41)

This can be identified as the chordal distance.

As a corollary, the infinitesimal spectral distance can be obtained by replacing ϕ′− ϕ→
dϕ as

dD2(ωρ+dρ, ωρ) =
sin θ dϕ

2|Λ| . (5.42)

However, the important point to emphasise at this stage is that this process cannot

be inverted. Unlike the case of Riemannian differentiable manifold this infinitesimal

distance cannot be integrated to yield finite distance (5.41). This is related to the fact
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that the interpolating states of the chord can be shown to correspond to the mixed

states in contrast to the extremal points, associated to the pure states.

With this, we will follow up in the next chapters the computation of Connes’ spectral

distance on non-commutative spaces: Moyal plane and fuzzy sphere by introducing appro-

priate spectral triples which is adaptable to the Hilbert-Schmidt operator formalism of non-

commutative quantum mechanics, which we reviewed in chapter 2.

We have seen that the configuration spaces of a non-commutative spaces like Moyal plane

and Fuzzy sphere, which are themselves Hilbert sapces and furnish the unitary represen-

taions of the respective coordinate algebras of types (1.17),(1.19) are analogous to the Hilbert

space of a commutative quantum system. In [80], it was shown that the quantum state space

of a commutative quantum system has a natural Riemannian metric and other geometrical

properties like curvature tensor was presented for the generalized coherent states manifolds.

For this, we will review the construction of coherent states on Moyal plane R2
? and fuzzy

sphere S2
? so that the corresponding manifolds of these coherent states can be compared

with the respective undeformed spaces: Euclidean plane R2 and commutative 2-sphere S2.

5.7 coherent states

Let a Lie group G be a dynamical symmetry group of a given quantum system described

by the quantum Hilbert space H. Let T(g) be a unitary irreducible representation of g ∈ G

acting on the Hilbert space H. We can then define the system of coherent states {|ψg〉} by

the action of T(g) on a fixed normalized reference state |ψ0〉 ∈ H [111]:

|ψg〉 = T(g)|ψ0〉. (5.43)

Let H ⊂ G be a subgroup with elements h which leave reference state |ψ0〉 invariant up to a

phase factor,

T(h)|ψ0〉 = eiφ(h)|ψ0〉 , |eiφ(h)| = 1 ∀ h ∈ H. (5.44)

This implies that every element g ∈ G can be decomposed as

g = Ωh ; h ∈ H and Ω ∈ X = G/H, Coset space. (5.45)

Then, elements g and g′ of G with different h and h′ but with same Ω produce coherent

states which differ only by a phase factor:

|ψg〉 = eiδ|ψg′〉 , where δ = φ(h)− φ(h′). (5.46)
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Thus, the corresponding density matrices are equal : |ψg〉〈ψg| = |ψg′〉〈ψg′ | and characterises

the space of equivalence classes i.e., points of coset space X = G/H. A coherent state |Ω〉 ≡
|ψΩ〉 is determined by a point Ω = Ω(g) in the coset space X = G/H.

In case, if G = H3, the Heisenberg-Weyl group then Glauber coherent states are defined on

the complex plane C = H3/U(1) which serve as the homogeneous space of Moyal plane. If

G = SU(2), the spin coherent states are defined on the unit sphere S2 = SU(2)/U(1) which

serve as the homogeneous space of fuzzy sphere.

5.7.1 Moyal plane

Let us remind that the coherent states (2.12) on the configuration space Hc (2.2) of Moyal

plane are quantum states which are the eigenstates of the annihilation operator b̂ = 1√
2θ
(x̂1 +

ix̂2) (2.1) as

|z〉 = U(z)|0〉 = e−zz̄/2 ezb̂† |0〉 = e−zz̄/2
∞

∑
n=0

1√
n!

zn|n〉 ; b̂|z〉 = z|z〉 , 〈z|b̂† = z̄〈z|. (5.47)

where

U(z) = ezb̂†−z̄b̂ = e−zz̄/2 ezb̂†
e−z̄b̂ . (5.48)

These coherent states are the quantum states which saturates the Heisenberg’s uncertainty

relation: ∆x̂1∆x̂2 = θ
2 . Each state |z〉 which is obtained by the action of a unitary operator

U(z) on some fixed vector, say the vacuum state |0〉, is specified by a complex number z. It

is well-known that ‖|z〉 − |z′〉‖ → 0 as |z− z′| → 0 and hence implies that coherent states

have the properties of the classical states.

They admit a resolution of the identity on Hc but they are not orthogonal

1
π

∫
d2z|z〉〈z| = 1c and 〈z1|z2〉 = e−z1 z̄1/2−−z2 z̄2/2+z2 z̄1 6= δ(z1 − z2) , (5.49)

as they furnish an over-complete basis.

5.7.2 Fuzzy sphere

Let us review the construction of generalized coherent states of SU(2) group [86] such that

the non-commutative analog of the homogeneous space of the fuzzy sphere can be con-

structed by using the Perelomov’s SU(2) coherent states [87]. Note that the Heisenberg un-

certainty relations for fuzzy sphere is given by

∆x̂1∆x̂2 ≥
θ f

2
|〈x̂3〉| =⇒ ∆x̂1∆x̂2 =

1
2

θ2
f j for both |j, j〉, |j,−j〉 (5.50)
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Thus, we can choose the “vacuum state” as the highest weight state |j, j〉 associated to the

north pole and the Perelomov SU(2) coherent states can be obtained by the action of repre-

sentation T(g) of g ∈ SU(2) acting on |j, j〉. Note that any action of X̂3 on the vacuum state

does not change it so that the group element generated by X̂3 is the stability subgroup U(1)

of SU(2). This implies that the set of generalized coherent states of SU(2) is topologically

isomorphic to the coset space SU(2)/U(1) ' S2. However, geometrically it reduces to S2

only in the limit j→ ∞.

We know that the operator T(g), ∀g ∈ SU(2) can be expressed in terms of Euler angles

as T(g) = e
−i φ

θ f
X̂3 e
−i θ

θ f
X̂2 e
−i ψ

θ f
X̂3 [86]. For S2, ψ = 0 locally such that a generic spin coherent

state specified by a point on S2 is given by

|z〉 = e
−i φ

θ f
X̂3 e
−i θ

θ f
X̂2 |j, j〉 . (5.51)

Further, setting the azimuthal angle φ = 0, we get

|z〉 = e
−i θ

θ f
X̂2 |j, j〉 = e

θ
2θ f

(X̂−−X̂+)|j, j〉 . (5.52)

This parametrises the points along the geodesic (meridian) connecting north and south pole.

Note that z is the stereographic variable of S2 projected from the south pole to the complex

plane z = 1 and z = − tan θ
2 eiφ. We can also express it as

|z〉 ≡ |θ〉 =
j

∑
m=−j

 2j

j + m


1
2 (

cos
θ

2

)j+m(
sin

θ

2

)j−m
|j, m〉. (5.53)

These spin coherent states |z〉 [92] for a given spin j belongs to the configuration space Fj

of a fuzzy sphere with radius rj = θ f
√

j(j + 1). To every |z〉 ∈ Fj, we can define a density

matrix ρz = |z〉〈z| ∈ Hj and this pure quantum states ρz plays the role of generalized points

on the homogeneous space of fuzzy sphere.



6
C O N N E S ’ S P E C T R A L D I S TA N C E O N M O YA L P L A N E

In this chapter, we study the metric properties of Moyal plane by introducing a spectral triple

adaptable to the Hilbert-Schmidt operator formalism of non-commutative quantum mechan-

ics, reviewed in chapter 2. As mentioned earlier, a legitimate spectral triple (1.27) for Moyal

plane was first given in [74]. Using this triple (1.27), the spectral distance on the configu-

ration space of Moyal plane was obtained in [77, 78] where the Moyal star product (1.4) is

employed. But different star products and hence different position bases associated to them

for a given quantum system is not always equivalent, as explained in [38] through the exam-

ples of Moyal and Voros bases. Indeed, it is the Voros position basis which is the physical

basis on Moyal plane as this conforms to POVM. This motivates us to introduce an algorithm

[79] by introducing an appropriate spectral triple, adaptable to the Hilbert-Schmidt opera-

tor formalism and hence independent of any star products. One of the advantages of this

algorithm is that we can extend it to other non-commutative space like fuzzy sphere also. In

fact, for the example like fuzzy sphere, where the concerned Hilbert space is finite dimen-

sional, this algorithm is readily applicable-at least in principle. In contrast, if the concerned

Hilbert space is of infinite dimension, like in the Moyal plane this algorithm turns out to be

not so user-friendly-as we explain in the sequel. Nevertheless, it can definitely be used to

improve the estimate over and above the lower bound - as follows from this algorithm itself.

Moreover, employing this algorithm, it is possible to compute infinitesimal spectral distance

(up to a numerical factor) on the quantum Hilbert space of Moyal plane and fuzzy sphere

by exploiting the presence of additional degrees of freedom, indicating a deep connection

between geometry and statistics.

We would like to point out in this context that the above mentioned lower bound yields the

exact distance for a pair of infinitesimally separated discrete basis states and an almost exact

distance i.e., up to a constant numerical factor for infinitesimally separated coherent states

[79, 82]. We thus need to modify this formula to compute the finite distance, since as pointed

out earlier, that in generic noncommutative space the notion of conventional geodesic does

not exist preventing one from computing finite distance by integrating infinitesimal distance.

Here, we have proposed a generalized distance formula [92] which should, in principle,

yield the exact distance between any pair of states. We take up the case of Moyal plane

in this chapter and derive our general algorithm taking this as a prototype example. We

show, however, why this formula turns out to be not so user-friendly-as mentioned above.

70
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Consequently, we are forced to adopt a different approach to tackle this problem. And it

is only in the next chapter that this algorithm will find its non-trivial application in the

computation of finite spectral distance on fuzzy sphere.

The construction of Dirac operator DM on Moyal plane is given in appendix D. It is one of

the major ingredients of the corresponding spectral triple and plays the most important role

in the computation of spectral distance.

6.1 eigenspinors of dirac operator

The Dirac operator on Moyal plane takes the following hermitian form (see appendix D):

DM =

√
2
θ

0 b̂†

b̂ 0

 , (6.1)

acting on Ψ =

|ψ1〉
|ψ2〉

 ∈ Hc ⊗C2 through the left multiplication as

DΨ =

√
2
θ

0 b†

b 0

|ψ1〉
|ψ2〉

 =

√
2
θ

b† |ψ2〉
b |ψ1〉

 . (6.2)

We can then easily obtain the following normalized eigen-spinors of DM:

|0〉〉 :=

|0〉
0

 ∈ Hc⊗C2 ; |m〉〉± :=
1√
2

 |m〉
± |m− 1〉

 ∈ Hc⊗C2 ; m = 1, 2, 3, · · · (6.3)

with the eigenvalues λm for any state |m〉〉± as,

λ0 = 0 ; λ±m = ±
√

2m
θ

Further, they furnish a complete and orthonormal set of basis for Hc ⊗ C2, so that the

resolution of identity takes the form

1Hq⊗M2(C) = |0〉〉〈〈0|+
∞

∑
m=1

(
|m〉〉+ +〈〈m|+ |m〉〉− −〈〈m|

)
; (6.4)

with ±〈〈m|n〉〉± = δmn; ±〈〈m|n〉〉∓ = 0. (6.5)
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6.2 spectral triple for moyal plane R2
? and the spectral distance

To study the metric properties of the Moyal plane, we work with the same spectral triple

that was introduced in [79]:

AM = Hq , HM = H c ⊗ C2 and DM =

√
2
θ

0 b̂†

b̂ 0

 (6.6)

The module of the algebra AM is given by the space of sections of appropriate “spinor

bundle" defined through HM on which it acts through the diagonal representation π:

π(a)Ψ = π(a)

|ψ1〉
|ψ2〉

 =

a 0

0 a

|ψ1〉
|ψ2〉

 =

a |ψ1〉
a |ψ2〉

 ; Ψ ∈ HM. (6.7)

In order to define the Connes’ spectral distance on Hc, we have to define the pure states

on the algebra AM which play the role of generalized points on R2
?. Note that the algebra

AM ≡ Hq ⊂ B(Hc) has the tensor product structure: Hq ≡ Hc ⊗H∗c , where H∗c denotes the

dual of Hc. This implies that Hq is self dual. This motivates us to consider the normal states

[112, 113] on Hq which are given by

ωρ(a) := trc(ρa) , ∀ a ∈ Hq ; ρ† = ρ ∈ Hq , ρ ≥ 0 , trc(ρ) = 1. (6.8)

Note that ρ is a density matrix as viewed from Hc but is valued in Hq. And this feature is

the reason behind employing the Hilbert-Schmidt formalism, which facilitates the present

geometrical analysis. If the density matrix is of the form of rank-one projection operator

ρ = |ψ〉〈ψ| ∈ Hq for some |ψ〉 ∈ Hc, then the normal state ωρ is a pure state. In constrast, a

mixed state is given by a convex sum of such pure states.

Now, we can define Connes’ spectral distance (1.25) between two normal states on Ha as

d(ωρ′ , ωρ) = sup
a∈B
|ωρ′(a)−ωρ(a)| = sup

a∈B
|trc(∆ρa)| ; ∆ρ = (ρ′ − ρ). (6.9)

where B is the set of those elements of Hq which satisfy the ball condition, i.e.

B = {a ∈ A : ‖[DM, π(a)]‖op ≤ 1} , where ‖A‖op = sup
φ∈H

{
‖Aφ‖
‖φ‖

}
. (6.10)

Let us impose the following condition:

|ωρ′(a)−ωρ(a)| = 0 , ∀ a ∈ V0 ; V0 = {a ∈ Hq : ‖[DM, π(a)]‖op = 0}. (6.11)

Note that ∀ a ∈ Hq , we can write a = ‖a‖tr â where ‖â‖tr = 1. If the condition (6.11) is

not obeyed i.e. |ωρ′(a)− ωρ(a)| 6= 0 for some a ∈ V0, then the ball condition (6.10) gives no
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upper bound on ‖a‖tr such that the supremum of |ωρ′(a)−ωρ(a)| 6= 0 will just diverge. This

is just reminescent of the divergent distance between a pair of states at different latitudes

in the CP1 model introduced in section 5.6. Hence spectral distance between normal states

of a /∈ V0 can be infinite making it a pseudo-distance1 [114]. Moreover, we can see that this

condition (6.11) is obeyed by all elements of Hq. Since the operator norm of an operator A is

given by the square-root of the highest eigenvalue of A† A, we then have

[DM, π(a)] =

√
2
θ

 0 [b̂†, a]

[b̂, a] 0

 ; [DM, π(a)]† =

√
2
θ

 0 [b̂, a]†

[b̂†, a]† 0

 , (6.12)

[DM, π(a)]†[DM, π(a)] =
2
θ

[b̂, a]†[b̂, a] 0

0 [b̂†, a]†[b̂†, a]

 . (6.13)

This shows that ‖[DM, π(a)]‖op = 0 ⇒ ‖[[b̂†, a]]‖op = 0 = ‖[b̂, a]‖op ⇒ [b̂†, a] = 0 = [b̂, a]

which is true only for a ∝ 1c. This implies that ‖[DM, π(a)]‖op = 0 for a ∝ 1c but 1c /∈ AM =

Hq as this is a non-unital algebra. Thus, the set V0 contains only the null element. Here, we

can introduce an orthogonal complement V⊥0 of V0, i.e., V⊥0 = {a ∈ Hq : ‖[DM, π(a)]‖op 6=
0}. It is shown in [110] that the positive elements a+ ∈ A+ of A reach the supremum in the

distance formula (5.1). With this, we will consider the following subspace Bs of Hq:

Bs = {a ∈ Hq : a† = a = cc†, c ∈ Hq ; 0 < ‖[DM, π(a)]‖op ≤ 1}, (6.14)

such that the spectral distance on R2
? is given by

d(ωρ′ , ωρ) = sup
a∈Bs

|ωρ′(a)−ωρ(a)| = sup
a∈Bs

|trc(∆ρa)| = sup
a∈Bs

{‖a‖tr|trc(∆ρâ)|}. (6.15)

Clearly, the ball condition (6.10) yields upper bound on ‖a‖tr:

‖a‖tr ≤
1

‖[DM, π(â)]‖op
≤ sup

a∈Bs

{
1

‖[DM, π(â)]‖op

}
=

1
infa∈Bs‖[DM, π(â)]‖op

. (6.16)

We can also write ∆ρ = ‖∆ρ‖tr ∆̂ρ with ‖∆̂ρ‖tr = 1 such that we can decompose â ∈ Bs into

“longitudinal” (∆̂ρ) and “transverse” (∆̂ρ⊥) components as

â = cos θ ∆̂ρ + sin θ ∆̂ρ⊥ , where ‖∆̂ρ‖tr = ‖∆̂ρ⊥‖tr = 1 and trc(∆̂ρ⊥∆̂ρ) = 0. (6.17)

Here, we can choose θ to be 0 ≤ θ < π
2 as only positive values of sin θ and cos θ are required.

This is implied by the distance formula (6.9) itself which includes the absolute value. We

1 which satisfy all the properties of a distance but can be infinite.
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exclude θ = π
2 as for this case â = ∆̂ρ⊥ and hence the distance would collapse to zero as

|trc(∆̂ρ ∆̂ρ⊥)| = 0. Now, using this decomposition (6.17), we have

‖[DM, π(â)]‖op = ‖[DM , cos θ π(∆̂ρ) + sin θ π(∆̂ρ⊥)]‖op. (6.18)

Putting (6.16) and (6.18) in the distance formula (6.15), we get

d(ωρ′ , ωρ) = sup
a∈Bs

‖∆ρ‖tr| cos θ|
‖[DM, π(â)]‖op

=
‖∆ρ‖tr

infa∈Bs‖[DM , π(∆̂ρ) + tan θ π(∆̂ρ⊥)]‖op
. (6.19)

By using the traingle inequality, we have

‖[DM , π(∆̂ρ) + tan θ π(∆̂ρ⊥)]‖op ≤ ‖[DM , π(∆̂ρ)]‖op + | tan θ|‖[DM , π(∆̂ρ⊥)]‖op, (6.20)

such that

inf
a∈Bs
‖[DM, π(∆̂ρ) + tan θ π(∆̂ρ⊥)]‖op ≤ inf

θ∈[0, π
2 )

{
‖[DM, π(∆̂ρ)]‖op + | tan θ|‖[DM, π(∆̂ρ⊥)]‖op

}
= ‖[DM, π(∆̂ρ)]‖op . (6.21)

This implies that

1

infa∈Bs

{
‖[DM , π(∆̂ρ) + tan θ π(∆̂ρ⊥)]‖op

} ≥ 1

‖[DM, π(∆̂ρ)]‖op
. (6.22)

That is, we find an exact spectral distance formula:

d(ωρ′ , ωρ) =
‖∆ρ‖tr

inf
θ∈[0, π

2 ),∆̂ρ⊥
‖[DM , π(∆̂ρ) + tan θ π(∆̂ρ⊥)]‖op

= Ñ‖∆ρ‖tr ; (6.23)

=
‖∆ρ‖2

tr
infθ∈[0, π

2 ),∆ρ⊥‖[DM , π(∆ρ) + κ π(∆ρ⊥)]‖op
= N‖∆ρ‖2

tr , (6.24)

where κ =
‖∆ρ‖tr

‖∆ρ⊥‖tr
tan θ ; (6.25)

Ñ =
1

inf
θ∈[0, π

2 ),∆̂ρ⊥
‖[DM , π(∆̂ρ) + tan θ π(∆̂ρ⊥)]‖op

; (6.26)

N =
1

infθ∈[0, π
2 ),∆ρ⊥‖[DM , π(∆ρ) + κ π(∆ρ⊥)]‖op

. (6.27)

This exact distance formula has a lower bound:

d(ωρ′ , ωρ) ≥
‖∆ρ‖tr

‖[DM, π(∆̂ρ)]‖op
=

‖∆ρ‖2
tr

‖[DM, π(∆ρ)]‖op
. (6.28)

This lower bound was obtained in [79] to compute the infinitesimally separated pure states

on the configuration space of Moyal plane. Note at this stage that this lower bound will yield

the exact distance iff the optimal element as ∝ ∆ρ.
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Note that the Connes’ distance function depend on ∆ρ as it can be seen from (6.9) and

under a unitary transformation U, we have

d(ωρ+∆ρ, ωρ) = d(∆ρ)
U−→ d(U∆ρU†) = d(∆ρ) . (6.29)

Since ‖U∆ρU†‖tr = ‖∆ρ‖tr, we have

Ñ(U∆ρU†) = Ñ(∆ρ), N(U∆ρU†) = N(∆ρ) . (6.30)

From (6.26) and (6.27), we can see that Ñand N depend on the ‘direction’ of ∆ρ, in the

sense that even if ‖∆ρ′‖tr = ‖∆ρ‖tr, N(∆ρ′) 6= N(∆ρ). However, if ‖∆ρ′‖tr = ‖∆ρ‖tr implies

∆ρ′ = U∆ρU†, this dependence disappears using (6.30), Ñ is a constant as ∆̂ρ
′

and ∆̂ρ both

have norm one and N = Ñ
‖∆ρ‖tr

. This is the case for the coherent state basis in the Moyal plane,

where equality of the trace norms implies that ∆ρ′ and ∆ρ differ by a rotation of the form

R = eiφb†b. This explains why the Connes’ distance on the Moyal plane is proportional to the

trace norm, which is simply the Euclidean distance, infinitesimally and for finite distances.

We corroborate this result in the next section through a more explicit calculation.

6.3 spectral distance on the configuration space of moyal plane

From the above discussion, we see that it is quite simple to compute and matches with the

exact distance if we consider the “infinitesimally separated” discrete pure states, i.e. taking

ρ′ = |n + 1〉〈n + 1| and ρ = |n〉〈n| where |n〉 ∈ Hc is referred to as the “harmonic oscillator

state”. However, for finite distance, computation the exact distance formula (6.24) is not

favourable but we can obtain the exact distance from the first principle.

In case, we consider infinitesimally separated coherent pure states i.e. taking ρ′ = |z +
dz〉〈z + dz| and ρ = |z〉〈z|

(
|z〉 ∈ Hc (2.12)

)
, the lower bound (6.28) result differs from the

exact distance by a numerical factor. However, the exact distance can be obtained through

the introduction of projection operators on the Hilbert space Hq ⊗M2(C) which is spanned

by the eigen-spinor basis (6.3) of Dirac operator DM. This will be discussed in next upcoming

sections.
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6.3.1 Ball condition with the Eigenspinors of DM

The most important part for the computation of Connes’ spectral distance is the computa-

tion of ‖[DM, π(a)]‖op which we will compute using the eigenspinors (6.3) of DM. That is,

∀ m, m′ = 0, 1, 2, · · · , we have

±〈〈m|[D, π(a)]|m′〉〉± = ±(λ±m − λ±m′)±〈〈m|π(a)|m′〉〉± = ±
√

2
θ
(
√

m−
√

m′)A±mm′ ;(6.31)

±〈〈m|[D, π(a)]|m′〉〉∓ = ±(λ±m − λ∓m′)±〈〈m|π(a)|m′〉〉∓ = ±
√

2
θ
(
√

m +
√

m′)B±mm′ ; (6.32)

where, A±ll′ =
1
2
(
al,l′ + al−1,l′−1

)
; B±ll′ =

1
2
(
al,l′ − al−1,l′−1

)
; l, l′ = 1, 2, · · ·(6.33)

E±0l ≡ 〈〈0|π(a)|l〉〉± =
1√
2

a0l ; (6.34)

E±l0 ≡ ±〈〈l|π(a)|0〉〉 = 1√
2

al0 =
1√
2

a∗0l . (6.35)

With these, we can write the commutator [DM, π(a)] where the rows and coloumns for each

four block matrices are labeled by |0〉〉, |1〉〉+, |1〉〉−, |2〉〉+, |2〉〉−, · · · :

[DM, π(a)] =

√
2
θ

 (
√

m−
√

m′) +〈〈m|π(a)|m′〉〉+ (
√

m +
√

m′) +〈〈m|π(a)|m′〉〉−
−(√m +

√
m′) −〈〈m|[π(a)|m′〉〉+ −(√m−

√
m′) −〈〈m|π(a)|m′〉〉−

 .

(6.36)

6.3.2 Distance between discrete/harmonic oscillator states

In this section we compute the Connes’ spectral distance between discrete/harmonic oscil-

lator states. Since the formal algorithm (6.24) and (6.27), devised in the preceding section,

is not very user-friendly, as ∆ρ⊥ depends upon infinitely large number of parameters so

that looking for the infimum (6.27) is an extremely difficult job. However, we can follow

up the prescription (which is used in [77]) performed in section 5.3 of chapter 5 where we

first found an upper bound (5.23) to the distance and then searched for an optimal element

which saturates the upper bound. If we can identify at least one as (note that this may not

be unique!) then we can identify the upper bound to be the true distance. Note that we

also have a lower bound (6.28) to the spectral distance and it can be easily computed [79].

It may happen in some situations that both upper and lower bounds coincide. In this case,

their common value can be identified as the distance. For example, for the spectral distances

between infinitesimally separated discrete pure states in Moyal plane [79] and fuzzy sphere

[82] the upper and lower bounds coincide, as we shall see below.



6.3 spectral distance on the configuration space of moyal plane 77

6.3.2.1 Infinitesimal distance between discrete/harmonic oscillator states

Let us consider a pair of pure states represented by the respective density matrices: ρn+1 =

|n + 1〉〈n + 1| and ρn = |n〉〈n|. Then, the spectral distance is

d(ωn+1, ωn) = sup
a∈Bs

|tr(ρn+1a)− tr(ρna)| = sup
a∈Bs

|〈n + 1|a|n + 1〉 − 〈n|a|n〉|. (6.37)

By simply using b̂|n + 1〉 =
√

n + 1|n〉 and b̂|n〉 = √n|n− 1〉, we can easily get

〈n + 1|a|n + 1〉 = 1
n + 1

〈n|b̂ab̂†|n〉 = 1√
n + 1

〈n|[b̂, a]|n + 1〉+ 〈n|a|n〉. (6.38)

Thus, the distance (6.37) reduces to

d(ωn+1, ωn) = sup
a∈Bs

1√
n + 1

|〈n|[b̂, a]|n + 1〉| = sup
a∈Bs

1√
n + 1

|[b̂, a]n,n+1|. (6.39)

Using the Bessel’s inequality:

‖A‖2
op ≥∑

i
|Aij|2 ≥ |Aij|2 (6.40)

We get the distance as

d(ωn+1, ωn) = sup
a∈Bs

1√
n + 1

|[b̂, a]n,n+1| =
1√

n + 1
sup
a∈Bs

‖[b̂, a]‖op. (6.41)

From (6.13), we find that ‖[DM, π(a)]‖op =
√

2
θ‖[b̂, a]‖op =

√
2
θ‖[b̂†, a]‖op so that the ball

condition yields

‖[DM, π(a)]‖op ≤ 1 =⇒ ‖[b̂, a]‖op ≤
√

θ

2
. (6.42)

Hence, we get an upper bound on the infinitesimal spectral distance as

d(ωn+1, ωn) ≤
√

θ

2(n + 1)
. (6.43)

Let us now hold the search for optimal element which saturates the above in-equality (6.43)

and compute the lower bound (6.28). For the computation of operator norm ‖[DM, π(dρ)]‖op,

we can use the Dirac eigenspinors (6.3). Here dρ = |n+ 1〉〈n+ 1| − |n〉〈n| is a diagonal matrix

so that the block matrices of the commutator [DM, π(dρ)] (6.36) will be zero as m = m′ in

(6.31). With this, we get

[D, π(dρ)] =

√
2
θ

 0 B

−B†
0

 ; where B =


−√n 0 0

0 2
√

n + 1 0

0 0 −
√

n + 2

 (6.44)
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with the rows and columns labeled from top to bottom and left to right respectively by

|n〉〉+, |n + 1〉〉+, |n + 2〉〉+ and |n〉〉−, |n + 1〉〉−, |n + 2〉〉−. From this, we get the operator

norm

‖[D, π(dρ)]‖op =

√
2
θ
‖B‖op = 2

√
2(n + 1)

θ
. (6.45)

Since tr(dρ)2 = 2, we have

d(ωn+1, ωn) =
tr(dρ)2

‖[D, π(dρ)]‖op
=

√
θ

2(n + 1)
, (6.46)

which is exactly the upper bound (6.43). That is, the true distance is

d(ωn+1, ωn) =

√
θ

2(n + 1)
. (6.47)

Clearly, the optimal element as ∈ Bs is

as =
dρ

‖[DM, π(dρ)]‖op
. (6.48)

This implies that the spectral distance between infinitesimally separated discrete pure states

ρn+1 and ρn is

d(ωn+1, ωn) = |ωn+1(as)−ωn(as)| =
tr(dρ)2

‖[D, π(dρ)]‖op
=

√
θ

2(n + 1)
. (6.49)

This has been obtained in [77] where Moyal star product is employed to define the spectral

triple and also in [79] within the context of Hilbert-Schmidt operator formalism.

6.3.2.2 Finite distance between discrete/harmonic oscillato states

Let us consider a pair of “finitely separated” discrete pure states ωm and ωn with the cor-

responding density matrices ρm = |m〉〈m| and ρn = |n〉〈n| with k ≡ m− n ≥ 2. Now the

distance between these states can be written as

d(ωm, ωn) = sup
a∈Bs

|tr{(ρm − ρn)a}| = sup
a∈Bs

|tr(ρn+ka)− tr(ρna)|. (6.50)

Clearly, we can write

|tr(ρn+ka)− tr(ρna)| =
∣∣∣ k

∑
i=1

tr
[{

ρn+i − ρn+(i−1)
}

a
]∣∣∣ = ∣∣∣ m−1

∑
p=n

tr{(ρp+1 − ρp)a}
∣∣∣ , (6.51)
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where we relabel the summing index as p = n + i − 1 so that we can easily make the

comparision with the infinitesimal case. We had

tr{(ρp+1 − ρp)a} = 1√
p + 1

|〈p|[b̂, a]|p + 1〉| ≤ 1√
p + 1

‖[b̂, a]‖op , (6.52)

along with the ball condition (6.42). This implies that the finite spectral distance has the

upper bound which is just sum over each upper bound of infinitesimal distances:

d(ωm, ωn) ≤
√

θ

2

m−1

∑
p=n

1√
p + 1

. (6.53)

Now, we need to find an optimal element as ∈ B which saturates the above inequality.

Let us demand as ∈ Bs is the one such that

∣∣∣ m−1

∑
p=n

1√
p + 1

〈p|[b̂, as]|p+ 1〉
∣∣∣ ≡ ∣∣∣ m−1

∑
p=n

(as)p+1,p+1− (as)p,p

∣∣∣ = |(as)m,m− (as)n,n| =
√

θ

2

m−1

∑
p=n

1√
p + 1

.

Taking (as)m,m = 0 which implies that |(as)n,n| =
√

θ
2 ∑m−1

p=n
1√
p+1

, the optimal element can

be constructed as

as =

√
θ

2

m−1

∑
p′=n

m−n

∑
i=1

1√
n + i

|p′〉〈p′|. (6.54)

This gives the finite spectral distance between ωm and ωn as

d(ωm, ωn) =

√
θ

2

m−1

∑
p=n

1√
p + 1

>
tr
{
(∆ρ)2}

‖[DM, π(∆ρ)]‖op
; ∆ρ = ρm − ρn , (6.55)

where the RHS of the in-equality is the lower bound (6.28) and the reason behind the strict

greater than sign is that as is not proportional to ∆ρ unlike the infinitesimal case. We can,

however, easily check that this spectral distance (6.55) saturates the triangle inequality [77]:

dDM(ωm, ωn) = dDM(ωm, ωl) + dDM(ωl , ωn), n ≤ l ≤ m. (6.56)

6.3.3 Distance between coherent states

Coherent states are maximally localized states which have the properties similar to the clas-

sical states so that we expect the spectral distance between any pair of pure coherent states

should give the same metric data of the classical manifold. Note that every coherent state

|z〉 ∈ Hc is obtained by the action of unitary transformation U(z) = ezb̂†−z̄b̂ on the “vacuum
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state” |0〉 ∈ Hc. Let us consider a pair of density matrices ρz = |z〉〈z| and ρw = |w〉〈w| such

that the distance between them is

d(ωz, ωw) = sup
a∈Bs

|ωz(a)−ωw(a)| = sup
a∈Bs

|tr(∆ρa)| , ∆ρ = (ρz − ρw) . (6.57)

Let us apply a unitary transformation U(z′) which represents a symmetry transformation

on the homogeneous space of coherent states such that ∆ρ → ∆ρU = U(z′)∆ρU(z′)†. Then,

the distance with the transformed ∆ρU is

d(ω(ρ+∆ρ)U , ωρU ) = sup
a∈Bs

{
|tr
{
(∆ρ)Ua

}
|
}
= sup

aU∈BU
s

{
|tr
{

∆ρaU}|} ; aU = U(z′)†aU(z′). (6.58)

Here, BU
s = {aU ∈ Hq : a†U = aU , 0 < ‖[DM, π(aU)]‖op ≤ 1}. Now, we can check that

‖[DM, π(aU)]‖op = ‖[DU
M, π(a)]‖op where DU

M = U(z′)DMU†(z′) since

DU
M ≡ ez′ b̂†−z̄′ b̂DMe−z′ b̂†+z̄′ b̂ =

√
2
θ

 0 b̂† − z̄′

b̂− z′ 0

 = DM −
√

2
θ

0 z̄′

z′ 0

 . (6.59)

This implies [DU
M, π(a)] = [DM, π(a)]. This, in turn, implies that the ball remains invariant

under unitary transformation : Bs = BU
s . Consequently, the distance between a pair of states

remains invariant if both the states are subjected to same unitary transformation, as the

supremum in (6.58) is computed by varying the algebra elements in the same ball.

d(ω(ρ+∆ρ)U , ωρU ) = sup
aU∈BU

s

∣∣tr{∆ρaU}∣∣ = sup
a∈Bs

|tr(∆ρ a)| = d(ωρ+∆ρ, ωρ). (6.60)

We can now choose z′ such that U(z′)ρwU†(z′) = ρ0 ≡ |0〉〈0|, i.e. z′ = −w and then

U(−w)ρzU†(−w) = |z−w〉〈z−w| so that the spectral distance depends on ∆ρ = ρz − ρw ≡
U(ρz−w − ρ0)U† :

d(ωz, ωw) ≡ d(ωz−w, ω0) , (6.61)

indicating the translational invariance in the complex plane, parametrizing coherent states.

This implies we can always choose, without loss of generality, a pure state to be ρ0 = |0〉〈0|
at the origin and another being ρz = |z〉〈z| = U(z)ρ0U†(z), translated state of ρ0 by the

action of U(z) . The spectral distance can then be written as

d(ωz, ω0) = sup
a∈Bs

|ωz(a)−ω0(a)| = sup
a∈Bs

|〈0|U†(z)aU(z)− a|0〉|. (6.62)

Note that this is the same thing as done in [79] where we can define new translated boson

operators as ˆ̃b = b̂ − z′ and ˆ̃b† = b̂† − z̄′ with the new “vacuum”: |z′〉 = |0̃〉 for which
ˆ̃b|0̃〉 = 0, ˆ̃b†|0̃〉 = |1̃〉, etc.
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This distance (6.61) can be thought as the maximum change in the expectation values of an

operator a and the translated operatore U†(z)aU(z) in the same state |0〉 [78]. This reminds

us of the transition from the Schrödinger to Heisenberg picture, where the operators are

subjected to the unitary evolution in time through an adjoint action of the unitary operator,

while the states are held frozen in time. Thus, we can introduce a one-parameter family of

pure states ωzt [78] given by the pure density matrices

ρzt = |zt〉〈zt| , with t ∈ [0, 1] (6.63)

. With this, we can define a function W : [0, 1]→ R [78] as

W(t) = ωzt(a) = tr(ρzta) = 〈0|U†(zt)aU(zt)|0〉 ; with W(0) = ω0(a), W(1) = ωz(a). (6.64)

We can then write

|ωz(a)−ω0(a)| =
∣∣∣ ∫ 1

0

dW(t)
dt

dt
∣∣∣ ≤ ∫ 1

0

∣∣∣dW(t)
dt

∣∣∣ dt. (6.65)

Using the Hadamard identity with U(zt) = eG(zt) where G(zt) = ztb̂† − z̄tb̂, we have

U(zt)aU†(zt) = eG(zt) a e−G(zt) = a + [G(zt), a] +
1
2!
[G(zt), [G(zt), a]] + · · · , (6.66)

⇒ dW(t)
dt

= 〈0|[G(z), a]|0〉+ t〈0|[G(z), [G(z), a]]|0〉+ t2

2!
〈0|[G(z), [G(z), [G(z), a]]]|0〉+ · · ·

= 〈0|eG(zt) [G(z), a] e−G(zt)|0〉 = ωzt([G(z), a]) = z̄ωzt([b, a]) + zωzt([b, a]†) .(6.67)

Using the Cauchy-Schwarz inequality, we have

|z̄ωzt([b, a]) + zωzt([b, a]†)| ≤
√

2|z|
√
|ωzt([b, a])2 + |ωzt([b, a]†)2|. (6.68)

Since for every state ω, we have ω(a) ≤ ‖a‖ and ‖a‖ = ‖a†‖, we further have

√
2|z|

√
|ωzt([b, a])2 + |ωzt([b, a]†)2| ≤

√
2|z|

√
‖[b, a]‖2

op + ‖[b, a]†‖2
op = 2|z|‖[b, a]‖op. (6.69)

With these results and the ball condition (6.42), we finally get the spectral distance as

dDM(ωz, ω0) = sup
a∈Bs

|ωz(a)−ω0(a)| ≤ 2|z| sup
a∈Bs

‖[b, a]‖op ≤
√

2θ|z| . (6.70)

As follows from (6.66), the optimal element as which gives the exact distance should satisfy

[G(z), as] =
√

2θ|z| and [G(z), [G(z), as]] = 0. (6.71)

A simple inspection suggests the following form for optimal element as:

as =

√
θ

2

(
b̂e−iα + b̂†eiα

)
, where z = |z|eiα , (6.72)
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reproducing the result of [78]. But note here that although ‖[DM, π(as)]‖op = 1, we found

that ‖as‖2
tr =

√
θ
2 ∑∞

n=0(2n + 1) = ∞ which means as /∈ Hq = AM, but can be thought of as

belonging to the multiplier algebra2. However, one can obtain this as (6.72) as the limit point

of a sequence (by Proposition 3.5 of [78]):

an =

√
θ

2

(
be−iαe−λnb†b + e−λnb†bb†eiα

)
∈ AM . (6.73)

We briefly review the proof of proposition 3.5 of [78] which says ‘Let z = |z|e iα be a fixed

translation and λ > 0. Define a =
√

θ
2

(
b̂
′
+ b̂

′†
)

, where b̂′ = b̂e−iα
(

e−λb̂† b̂
)

. Then there exists

a γ > 0 s.t. a ∈ Bs for any λ ≤ γ. Using this proposition, any generic element of the sequence

(6.73) can be written in terms of above b̂′ as a =
√

θ
2 (b̂
′ + b̂

′†) ∈ Bs with λ ≤ γ. Now, it can

be easily shown that ω0(a) = 0 and ωz(a) =
√

2θ |z| exp
(
−|z|2(1− e−λ)

)
. Therefore, we

have

d(ωz, ω0) = lim
n→∞
|ωz(a)−ω0(a)| = lim

λ→0

√
2θ |z| exp

(
−|z|2(1− e−λ)

)
=
√

2θ |z|. (6.74)

But here we propose an alternative approach [92] to obtain the optimal element. For that we

define

πN(a) = PNπ(a)PN , PN = |0〉〉〈〈0|+
N

∑
n=1

{
|n〉〉+ +〈〈n|+ |n〉〉− −〈〈n|

}
, (6.75)

where |n〉〉± are the eigenspinors of DM (6.3) and πN(a) ∈ (2N + 1)-dimensional subspace

of Hq ⊗ M2(C) and obtained by projecting using the projector PN . As it turns out that in

the case of Moyal plane that the computation of infinitesimal distance is quite adequate to

compute finite distance, as we shall discuss shortly.

Let us now make use of the eigenbasis (6.3) of Dirac opeartor DM such that the infinites-

imal separation ∆ρ = dρ = ρdz − ρ0 = dz̄|0〉〈1|+ dz|1〉〈0| can be represented by a 5 dimen-

sional subspace of Hq ⊗M2(C) as

π(dρ) ≡
dρ 0

0 dρ

 =



0 dz̄√
2

dz̄√
2

0 0

dz√
2

0 0 dz̄
2 − dz̄

2

dz√
2

0 0 − dz̄
2

dz̄
2

0 dz
2 − dz

2 0 0

0 − dz
2

dz
2 0 0


∈ Hq ⊗M2(C), (6.76)

where the columns and rows are labelled by |0〉〉, |1〉〉+, |1〉〉−, |2〉〉+, |2〉〉− of (6.3) respec-

tively.

2 Multiplier algebra M = ML ∩MR where ML =
{

T | ψT ∈ Hq ∀ ψ ∈ Hq
}

and MR =
{

T | Tψ ∈ Hq ∀ ψ ∈ Hq
}
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Since π(dρ) lives on 5-dimensional subspace of Hq ⊗ M2(C), let us now put N = 2 in

(6.75) which gives

π2(as) ≡ P2π(as)P2 =

√
θ

2



0 1√
2

1√
2

0 0

1√
2

0 0
√

2+1
2

√
2−1
2

1√
2

0 0
√

2−1
2

√
2+1
2

0
√

2+1
2

√
2−1
2 0 0

0
√

2−1
2

√
2+1
2 0 0


. (6.77)

We then get

[DM, π2(as)] ≡



0 − 1√
2

1√
2

0 0

1√
2

0 0 − 1
2

1
2

− 1√
2

0 0 − 1
2

1
2

0 1
2

1
2 0 0

0 − 1
2 − 1

2 0 0


; yielding

[DM, π2(as)]
†[DM, π2(as)] ≡

 13×3 03×2

02×3 B2×2

 , where B2×2 =

 1
2 − 1

2

− 1
2

1
2

 . (6.78)

For any N, we find that

[DM, πN(as)]
†[DM, πN(as)] =

 1(2N−1)×(2N−1) O(2N−1)×2

O2×(2N−1) B

 ; B =

 1
2 − 1

2

− 1
2

1
2

 . (6.79)

This gives the operator norm ‖[D, πN(as)]‖op = 1 for each N, 2 ≤ N ≤ ∞:

‖[D, π(as)‖op ≡ lim
N→∞

‖[D, πN(as)]‖op ≡ ‖[D, πN(as)]‖op = 1 . (6.80)

Note that the basis (6.3) can be obtained naturally from a different orthonormal and complete

basis |n, ↑〉〉 = |n〉 ⊗
1

0

 =

|n〉
0

 ; |n, ↓〉〉 = |n〉 ⊗
0

1

 =

 0

|n〉

 , (6.81)

by first leaving out

|0〉
0

 ≡ |0〉〉 separately and then pairing |n, ↑〉〉 and |n− 1, ↓〉〉 as

|n〉〉± =
1√
2
(|n, ↑〉〉 ± |n− 1, ↓〉〉) = 1√

2

 |n〉
±|n− 1〉

 ; n = 1, 2, 3, .. . (6.82)
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The projector PN constructed from the basis (6.3), rather than from (6.81) for its natural

association with the Dirac operator.

Let 〈〈. | .〉〉 denotes an inner product between a pair of elements A1, A2 ∈ Hq ⊗M2(C),

〈〈A1 | A2〉〉 = TrHM(A†
1 A2) . (6.83)

Note that HM ≡ Hc ⊗ C2 and the above inner product (6.83) is the counter part of the

inner product (2.4) on Hc. Since for a given pair of operators a1, a2 ∈ Hq, we can define its

representations A1 = π(a1), A2 = π(a2) ∈ Hq ⊗ M2(C) such that the inner product (2.4)

between a1, a2 can be related to the inner product (6.83) of π(a1), π(a2) as

(a1, a2) =
1
2
〈〈π(a1) | π(a2)〉〉 . (6.84)

Thus, we now have

(dρ, as) =
1
2

∣∣〈〈π(dρ) | π(as)〉〉
∣∣ =

√
2θ |dz|. (6.85)

Here one can easily see that @ any a ∈ Hq s.t. π(a) = P2π(as)P2 and one can not simply

relate (6.83) with any inner products (., .) of Hq. Indeed, if it were to exist, we could have

identified this ‘a’, using (6.80) and (6.85), to be the optimal element itself, which by definition

has to belong to Hq = A, or at best to the multiplier algebra. In fact, this will be a persistent

feature with any finite (2N + 1)-dimensional projection πN(as) = PNπ(as)PN (6.75) as

1
2

∣∣〈〈π(dρ) | PNπ(as)PN〉〉
∣∣ = √2θ|dz| , (6.86)

is independent of N if N ≥ 2. One can note at this stage, however, that one can keep on

increasing the rank of the projection operator PN indefinitely. That is, even in the limit

N → ∞, PN → 1Hq⊗M2(C) (6.5) where PNπ(as)PN → π(as), we can interprete with (6.80)

(dρ, as) =
1
2

∣∣〈〈π(dρ) | π(as)〉〉
∣∣ ≡ lim

N→∞

1
2

∣∣〈〈π(dρ) | PNπ(as)PN〉〉
∣∣ = √2θ |dz| . (6.87)

Thus, instead of inserting a Gaussian factor, as in (6.73), we have a sequence {PNπ(as)PN}
of trace-class operators living in Hq ⊗ M2(C) (note that Hq ⊗ M2(C) can be regarded as

Hilbert-Schmidt operators acting on Hc ⊗ C2) and each of them satisfy the ball condition

(6.42), (6.80).

It is finally clear from the above analysis that the upper bound (6.70) is saturated in the

infinitesimal case through the sequence {PNπ(as)PN} in the limit N → ∞, allowing one to

identify

d(ρ0, ρdz) = d(|0〉〈0|, |dz〉〈dz|) =
√

2θ |dz| , (6.88)



6.4 spectral triple on Hq and the connection of geometry with statistics 85

with the optimal element now belonging to the multiplier algebra. Invoking translational

symmetry (6.61) it is clear that

d(ρ0, ρdz) = d(ρz, ρz+dz) =
√

2θ |dz| ∀ z ∈ {zt, t ∈ [0, 1]} (6.89)

and one concludes that for finitely separated states, one can write

d(ρ0, ρz) =
√

2θ |z|, (6.90)

reproducing the result (6.74) and identify the straight line joining z = 0 to z to be geodesic of

the Moyal plane enabling one to integrate the infinitesimal distance (6.89) along this geodesic

to compute finite distance. As we shall subsequently see this feature will not persist for other

generic non-commutative spaces and we will demonstrate this through the example of the

fuzzy sphere later. In fact, one can easily see at this stage that the distance (6.90) can be

written as the sum of distances d(ρ0, ρzt) and d(ρ0, ρzt) as,

d(ρ0, ρz) = d(ρ0, ρzt) + d(ρzt, ρz), (6.91)

where ρzt is an arbitrary intermediate pure state from the one-parameter family of pure

states, introduced in (6.63), so that the respective triangle inequality becomes an equality.

6.4 spectral triple on Hq and the connection of geometry with statistics

Here we provide a brief review of the computation of infinitesimal distance on Hq [79] which

on exploiting the presence of the additional degrees of freedom reveals a deep connection

between geometry and statistics [79]. We shall carry out a similar analysis on fuzzy sphere

S2
? in the next chapter.

On the quantum Hilbert space Hq of Moyal, the following spectral triple is defined in [79]:

Aq
M = L2 (Hq )3 ; Hq

M = Hq ⊗ C2 ; D q
M =

√
2
θ

 0 B̂‡

B̂ 0

 , (6.92)

where B̂ and B̂‡ are the ones introduced in (2.8). Here too we consider the usual action of

Aq
M on Hq

M through the diagonal representation analogous to the action of AM (6.7) on the

configuration spaceHc. Here, the density matrices onHq are of the form ρψ,φ ≡ |ψ, φ)(ψ, φ| ∈
L2(Hq) where |ψ, φ) ≡ |ψ〉〈φ| ∈ Hq with |ψ〉, |φ〉 ∈ Hc.

We know that for the infinitesimal distance between a pair of discrete states ρm+1,φ′ ≡
|m + 1, φ′)(m + 1, φ′| and ρm,φ ≡ |m, φ)(m, φ| where 〈φ|φ′〉 = δφ,φ′ , we can use the lower

bound formula (6.28) as it gives the exact infinitesimal distance. For simplicity, we can further

3 Hilbert space of Hilbert-Schmidt operators acting on Hq
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simplify the distance computation by computing the trace norm instead of operator norm in

the denominator of (6.28) as these two norms differ only by a numerical factor [79]. So, we

can define a modified infinitesimal spectral distance on the quantum Hilbert space as

d̃(ωρm+1,φ′ , ωρm,φ) =
trq
{
(dρ)2}

‖[Dq
M, π(dρ)]‖tr

; dρ = ρm+1,φ′ − ρm,φ . (6.93)

It is found that the distance between a pair of discrete pure states given by ρm+1,φ and ρm,φ

is always less than the one between ρm+1,φ′ and ρm,φ. That is,

d(ωρm+1,φ′ , ωρm,φ) =


√

θ
2(m+1) , if φ = φ′;√

2θ
m+2 , if φ 6= φ′.

(6.94)

This reveals the importance of right-hand sector |φ〉 for the states |m, φ) ≡ |m〉〈φ| ∈ Hq

[81] and hence the additional degrees of freedom (reviewed in section 1.1.2) present in non-

commutative space like Moyal plane. In [79], a more general situation has been considered

by taking the right-hand sector to be a statistical mixture that changes from point to point.

That is, the following density matrix on Hq is considered:

ρq(n) = ∑
k

pk(n)|n, k)(n, k| ∈ L2(Hq) , ∑
k

pk(n) = 1, ∀n. (6.95)

The physical meaning of such states has been understood by computing the average of the

radial operator in ρq(n) which yields trq(B̂‡
LB̂L ρq(n)) = n. That is, these states are localized

at a fixed radial distance n as the fluctuations vanish. Then the infinitesimal distance between

a pair of mixed states ρq(n + 1) and ρq(n) can be computed using the lower bound formula

(6.28) as mentioned earlier for infinitesimally separated discrete states (6.28) gives the exact

infinitesimal distance. In case dρ = ρ′q − ρq ≡ ρq(n + 1) − ρq(n), the following distance is

obtained:

d̃(ωn+1, ωn) =

√
θ

2
∑k
{

p2
k(n + 1) + p2

k(n)
}√

∑k
{
(2n + 3)p2

k(n + 1) + (2n + 1)p2
k(n) + 2(n + 1)pk(n + 1)pk(n)

} .

(6.96)

This depends on the probabilities pk(n+ 1) and pk(n). Two particular choices of probabilities

pk(n) were considered in [79] which we can briefly review here. However, the details of

similiar computations on quantum Hilbert space of fuzzy sphere is given in chapter 7.

1. Choosing pk’s such that the distance between a pair of points is minimized, it is found

that

d̃(ωn+1, ωn) =

√
θ

6Ω
1√

n + 1
; Ω→ a cut-off for ∑

k
. (6.97)
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2. Choosing pk’s that maximize the local entropy S(n) = −∑k pk(n) log pk(n); with

∑k pk(n)Ek = E(n) held fixed, yielding a local Boltzmann distribution:

pk(n) =
e−β(n)Ek

Z(β(n))
; Z(β(n)) = ∑

k
e−β(n)Ek , (6.98)

where β(n) is the local inverse temperature. From this, the following distance has been

obtained

d̃(ωn+1, ωn) =
θ

6

√
Z(2β)

Z(β)

1√
n + 1

, Z(β) = ∑
k

e−βEk (6.99)

This clearly shows the connection between the distance and partition function describing

the statistical properties of the 2D Moyal plane with quantum states in thermal equilibrium.

However, in this case the distance decreases as the temperature T increases since the value

of the factor
√

Z(2β)

Z(β)
lies within 0 to 1 and goes to 0 for T → ∞ [79].



7
S P E C T R A L D I S TA N C E S O N F U Z Z Y S P H E R E

As mentioned earlier, fuzzy sphere S2
? can be considered as a quantized 2-sphere S2. We

know the metric properties of S2 from usual Riemannian geometry. Here, we study the

metric properties of its quantized version S2
?. Using the generalized Perelomov’s SU(2) co-

herent states (5.52), we try to make comparison between the metric properties of S2 and the

non-commutative analogue of homogeneous space of S2
? i.e. the space of Perelomov’s SU(2)

coherent states [87]. As we have seen it is the Dirac operator, one of the most important

ingredients of spectral triple, that gives the metric properties of a generalized space associ-

ated with a given spectral triple. For a review of the construction of Dirac operator on fuzzy

sphere given in [88] see appexndix D.

7.1 spectral triple on the configuration space F j of fuzzy sphere

Let us denote by S2
j , a single fuzzy sphere with a fixed radius r j = θ f

√
j( j + 1). Then,

the spectral triple of a fuzzy sphere S2
j can be constructed [82] in the same way as done for

Moyal plane [79]:

• The Algebra A f = H j = Span{| j , m〉〈 j , m ′ | , − j ≤ m , m ′ ≤ j}.

• The Hilbert space H f = F j ⊗ C2 =

{  | j , m〉
| j , m ′ 〉

 } .

• Dirac operator D f = 1
r j
~̂J ⊗ ~σ, obtained in (D.35).

This triple is also introduced in [89]. Here, the algebra A f acts on the Hilbert sapce H f

through the diagonal representation

π (a)Φ =

a 0

0 a

 Φ1

Φ2

 ; a ∈ A , Φ =

Φ1

Φ2

 ∈ H f . (7.1)

This spectral triple is a legitimate spectral triple as the Dirac operator D f satisfy the condi-

tions that [D f , π (a)] are bounded for all a ∈ A f and the resolvent (D f − µ)−1 is compact

for all µ /∈ R.

88
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For a given j, we have − j ≤ m ≤ j so the configuration space F j (2.67) and the quantum

Hilbert space H j (2.69) of a given fuzzy sphere with radius r j are all finite dimensional. For

an operator A acting on a Hilbert space of dimension d, the operator norm and trace norms

are equivalent, in the sense that,

‖A‖op ≤ ‖A‖tr ≤
√

d‖A‖op . (7.2)

Note that the Dirac operator D f can be effectively written as

D f =
1
rj

 Ĵ3 Ĵ1 − i Ĵ2

Ĵ1 + i Ĵ2 − Ĵ3

 . (7.3)

By a simple computation, we can see that

‖[D f , π(a)]‖2
tr =

1
r2

j

(
2‖[ Ĵ3, a]‖2

tr + ‖[ Ĵ+, a]‖tr + ‖[ Ĵ−, a]‖tr

)
. (7.4)

We know that ‖A + B‖tr ≤ ‖A‖tr + ‖B‖tr and ‖AB‖tr ≤ ‖A‖tr‖B‖tr, which are, of course,

true for all norms. Moreover, we have ‖ Ĵ3‖2
tr =

1
2‖ Ĵ+‖2

tr =
1
2‖ Ĵ−‖2

tr =
1
3 j(j + 1)(2j + 1). With

these, we can conclude that

‖[D f , π(a)]‖op ≤ ‖[D f , π(a)]‖tr ≤
2
θ f

√
2(2j + 1)‖π(a)‖tr ≤

2
√

2
θ f

(2j + 1)‖π(a)‖op < ∞.

(7.5)

The reslovent of D f can be explicitly computed as

(D f − µ)−1 = r2
j
{

j(j + 1)− µrj(µrj + 1)
}−1

(
D f +

1
rj
+ µ

)
, (7.6)

the only singuralities occur at µ = j
rj
∈ R and µ = −(j+1)

rj
∈ R. For µ /∈ R, (D f − µ)−1 is

non-singular and bounded which mapsH f into itself and thus it is a finite rank operator and

hence a compact operator. Note that these properties are valid only for a particular fuzzy

sphere S2
j with finite j but these cannot be extended to the union of all the fuzzy spheres

⊕j∈Z+/2 S
2
j ≡ R3

θ f
. In fact our distance computation will be restricted to a particular fuzzy

sphere S2
j with a fixed radius rj = θ f

√
j(j + 1).
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7.1.1 Eigenspinors of Dirac operator D f [89]

The eigenvalues of D f with the corresponding eigenspinors are obtained in [89] as

D f |m〉〉+ =
j
rj
|m〉〉+ ; D f |m′〉〉− = − j + 1

rj
|m′〉〉− , (7.7)

where, |m〉〉+ =
1√

2j + 1

 √
j + m + 1|j, m〉√

j−m|j, m + 1〉

 , m = −j− 1, ..., j (7.8)

|m′〉〉− =
1√

2j + 1

 −
√

j−m′|j, m′〉√
j + m′ + 1|j, m′ + 1〉

 , m′ = −j, , ...., j− 1. (7.9)

Note that the eigenvalues for a particular j is independent of m or m′ and is responsible

for a (2j + 2)-fold degeneracy in the positive eigenvalue sector and a 2j-fold degeneracy in

the negative eigenvalue sector. This can be understood from the tensor product structure of

Dirac operator (D.35) and the Clebsch-Gordon decomposition of a tensor product of a pair of

SU(2) representations. For example, if ~̂J in (D.35) corresponds to the j = 1/2 representation

i.e. ~̂J = ~σ/2, then it will split into the direct sum of j = 1 (triplet) and j = 0 (singlet)

representations of three and one dimension, respectively. Lastly, we would like to mention

that the positive eigenvalue of D f obtained in [89] is j+1
rj

and the negative is − j
rj

, unlike the

above (7.7). This is because of the fact that we ignore the identity term (responsible of chiral

symmetry) in the Dirac operator of [89], also the one obtained in [88], as this term does not

survive in the commutator [D f , π(a)].

7.1.2 Ball condition with Dirac eigenspinors

As in the case of Moyal plane, the computation of operator norm ‖[D f , π(a)]‖op for fuzzy

sphere is simplified drastically using the eigenspinors (7.7) basis. A straightforward compu-

tation yields,

+〈〈j, m|[D f , π(a)]|j, m′〉〉− =
1
rj

A(2j+2)×2j ; +〈〈j, m|[D f , π(a)]|j, n〉〉+ = 0 ; (7.10)

−〈〈j, m′|[D f , π(a)]|j, m〉〉+ = − 1
rj

A†
2j×(2j+2) ; −〈〈j, m′|[D f , π(a)]|j, n′〉〉− = 0 , (7.11)

where m, n = −j− 1,−j, · · · , j and m′, n′ = −j,−j− 1, · · · , j− 1 with A’s, given by

A(2j+2)×2j = (2j + 1)+〈〈j, m|π(a)|j, m′〉〉−
=

{√
(j−m)(j + m′ + 1) am+1,m′+1 −

√
(j−m′)(j + m + 1) am,m′

}
; (7.12)

A†
2j×(2j+2) = (2j + 1)−〈〈m′|π(a)|m〉〉+

=
{√

(j−m)(j + m′ + 1) am′+1,m+1 −
√
(j−m′)(j + m + 1) am′,m

}
. (7.13)



7.1 spectral triple on the configuration space F j of fuzzy sphere 91

That is, in the matrix form we get

[D f , π(a)] =
1
rj

 0(2j+2)×(2j+2) A(2j+2)×2j

− A†
2j×(2j+2) 0(2j)×(2j)

 , (7.14)

which yields

[D f , π(a)]†[D f , π(a)] =
1
r2

j

 (AA†)(2j+2)×(2j+2) 0(2j+2)×2j

02j×(2j+2) (A† A)2j×2j

 . (7.15)

With this, we get the operator norm as

‖[D f , π(a)]‖2
op = ‖[D f , π(a)]†[D f , π(a)]‖op =

1
r2

j
‖AA†‖op =

1
r2

j
‖A† A‖op =

1
r2

j
‖A‖2

op . (7.16)

Thus, the computation of operator norm ‖[D f , π(a)]‖op reduces to the computation of ‖A‖op

and that too by computing ‖A† A‖op, rather than ‖AA†‖op as the former involves A† A which

is a matrix of smaller rank. With this, the ball condition reduces to

‖[D f , π(a)]‖op ≤ 1 ⇒ ‖A‖op ≤ rj . (7.17)

7.1.3 Spectral distance between discrete states

The role of generalized points on Fj will be played by the pure states ωρ where ρ is the pure

density matrix. We can take ρ = |j, m〉〈j, m|, giving us the discrete pure states and we can

also take ρ = |z〉〈z| where |z〉 is the Perelomov’s coherent state (5.52).

7.1.3.1 Infinitesimal distance

Let us define the Connes’ spectral distance between two infinitesimally separated discrete

pure states ωρm+1 ≡ ωm+1 and ωρm ≡ ωm, where ρm = |j, m〉〈j, m| ≡ |m〉〈m| (suppressing j,

as the value of j is fixed). We have

dj(ωm+1, ωm) = sup
a∈Bs

|tr(ρm+1a)− tr(ρma)| = sup
a∈Bs

|〈m + 1|a|m + 1〉 − 〈m|a|m〉| ; (7.18)

where Bs = {a ∈ A f : a† = a = c†c, 0 < ‖[D f , π(a)]‖op ≤ 1}. In the same way as done for

Moyal case, we get

dj(ωm+1, ωm) = sup
a∈Bs

∣∣∣〈m| Ĵ−aĴ+√
j(j + 1)−m(m + 1)

− a|m〉
∣∣∣ = sup

a∈Bs

|〈m|[ Ĵ−, a]|m + 1〉|√
j(j + 1)−m(m + 1)

. (7.19)
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Using again the Bessel’s inequality (6.40), we get the distance to be bounded above by

dj(ωm+1, ωm) ≤
‖[ Ĵ−, a]‖op√

j(j + 1)−m(m + 1)
=

‖[ Ĵ+, a]‖op√
j(j + 1)−m(m + 1)

≤ rj√
j(j + 1)−m(m + 1)

.

(7.20)

The last inequality follows from the ball condition and (7.4) to get

1
rj
‖[ Ĵ−, a]‖op ≤ ‖[D f , π(a)]‖op ≤ 1 ⇒ ‖[ Ĵ−, a]‖op ≤ rj . (7.21)

It is now quite straightforward to check that this upper bound in (7.20) coincides exactly

with the lower bound (6.28) i.e, the optimal element as ∈ Bs saturating the above inequality

(7.20) is given by

as =
dρ

‖[D f , π(dρ)]‖op
, where dρ = ρm+1 − ρm = |m + 1〉〈m + 1| − |m〉〈m| . (7.22)

All that we need to do is to compute the operator norm ‖[D, π(dρ)]‖op the using Dirac

operator’s eigen-spinor basis (7.7). To that end, note that

[D f , π(dρ)] =
1
rj

 0 A

−A†
0

 , where A = (2j + 1)+〈〈j, m|π(dρ)|j, m′〉〉− (7.23)

i.e. A =
{√

(j−m)(j + m′ + 1) (dρ)m+1,m′+1 −
√
(j−m′)(j + m + 1) (dρ)m,m′

}

=


a11 0 0

0 a22 0

0 0 a33

 ; (note that dρ = |m + 1〉〈m + 1| − |m〉〈m|) (7.24)

with, a11 = −
√

j(j + 1)−m(m− 1)

a22 = 2
√

j(j + 1)−m(m + 1) (7.25)

a33 = −
√

j(j + 1)− (m + 1)(m + 2) .

Here, the rows and columns of the matrix A are labeled from top to bottom and left to right

respectively by |j, m− 1〉〉+, |j, m〉〉+, |j, m + 1〉〉+ and |j, m− 1〉〉−, |j, m〉〉−, |j, m + 1〉〉−. This

readily yields ‖[D f , π(dρ)]‖op = 2
rj

√
j(j + 1)−m(m + 1). The lower bound formula (6.28)

then gives, on using tr{(dρ)2} = 2

dj(ωm+1, ωm) ≥
‖dρ‖2

tr
‖[D f , π(dρ)]‖op

=
θ f
√

j(j + 1)√
j(j + 1)−m(m + 1)

. (7.26)
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Thus, the distance is given by

dj(ωm+1, ωm) =
θ f
√

j(j + 1)√
j(j + 1)−m(m + 1)

. (7.27)

Finally, we show that this as is not unique and there exists another optimal element a′s:

a′s =
rj√

j(j + 1)−m(m + 1)
|m + 1〉〈m + 1| , (7.28)

which too saturates inequality (7.20). This reproduces the result of [89].

7.1.3.2 A heuristic derivation of the above distance formula (7.27)

N

S

dθm

x̂2

x̂3

x̂1

θfm
θf (m+ 1)

θf∆m = θf

Figure 7.1: Infinitesimal change on the surface of sphere with respect to the change in m

To clarify the adjective "infinitesimal" in this context, let us recall from the theory of angu-

lar momentum that the state |j, m〉 can be visualized as the vector ~x precessing the x3- axis

along a cone, in such a manner that the tip of the vector ~x lies on the circle of latitude on a

sphere of radius θ f
√

j(j + 1), maintaining a fixed x3- component θ f m with m varying in the

interval −j ≤ m ≤ j(j ∈ Z/2) in the steps of unity (see fig.1). The associated polar angles

are therefore quantized as,

θm = sin−1
( m√

j(j + 1)

)
. (7.29)

Now, let us treat m to be a continuous variable for a moment. This yields

dθm =
dm√

j(j + 1)−m2
. (7.30)
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The distance, which is identified with arc length in figure 1, is then obtained by multiplying

with the quantized radius to get

ds(m) =
θ f
√

j(j + 1) dm√
j(j + 1)−m2

. (7.31)

This almost matches with the distance expression (7.27); in fact with the formal replacement

dm → ∆m = 1 and m2 → m(m + 1) one reproduces (7.27) exactly. Further, (7.31) can be

shown to follow, albeit somewhat heuristically, from (7.27) by taking the average of the m

dependence in (7.27), which gives d(m, m + 1) and that of the m -dependence occurring in

d(m− 1, m) : 1
2 [m(m + 1) + m(m− 1)] = m2.

7.1.3.3 Finite Distance

Let us consider a pair of finitely separated discrete pure states ωm and ωn with ρm = |m〉〈m|
and ρn = |n〉〈n| respectively, such that k = m− n ≥ 2 where −j ≤ m, n ≤ j. We follow here

the same technique as adopted in Moyal plane, i.e., we can write

|tr{(ρm− ρn)a}| =
∣∣∣ k

∑
i=1

tr{(ρn+i− ρn+i−1)a}
∣∣∣ = ∣∣∣ m−1

∑
p=n

tr{(ρp+1− ρp)a}
∣∣∣ ; p = m+ i− 1. (7.32)

From the infinitesimal case, we found

|tr{(ρp+1 − ρp)a}| ≤ rj√
j(j + 1)− p(p + 1)

, (7.33)

so that the finite distance is bounded by

dj(ωm, ωn) = sup
a∈Bs

|tr{(ρm − ρn)a}| ≤
m−1

∑
p=n

rj√
j(j + 1)− p(p + 1)

(7.34)

=
k

∑
i=1

rj√
j(j + 1)− (n + i)(n + i− 1)

. (7.35)

We can easily see that the optimal element as ∈ Bs saturating this inequality is of the form:

as = θ f

m−1

∑
p=n

(
m−p

∑
i=1

√
j(j + 1)√

j(j + 1)− (p + i)(p + i− 1)
|p〉〈p|

)
. (7.36)

This gives the finite distance between a pair of discrete pure states ωm and ωn as

dj(ωm, ωn) = |tr{(ρm − ρn) as}| =
k

∑
i=1

rj√
j(j + 1)− (n + i)(n + i− 1)

. (7.37)

We can easily check that this distance is additive, i.e, it saturates the triangle inequality [89]:

dj(ωm, ωn) = dj(ωm, ωl) + dj(ωl , ωn) , for any l ∈ n ≤ l ≤ m . (7.38)
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In particular, we can check the distance between north pole (N), represented by the pure

state ωj = |j〉〈j| and south pole (S), by ω−j = |−j〉〈−j| is given by

dj(N, S) = dj(ωj, ω−j) = θ f

2j

∑
k=1

√
j(j + 1)√

k(2j + 1− k)
, ∀ j . (7.39)

Note that both the discrete pure states ωj and ω−j representing north and south poles are

also coherent states. This implies that we should be able to reproduce the same results from

the computation of finite distance between coherent pure states which will be discussed in

the next subsection. Let us see for j = 1
2 , which corresponds to a fuzzy sphere with maximal

N → m = j = 1
2

S → m = −j = − 1
2

x̂2

x̂3

x̂1

N → m = j = 1

S → m = −j = −1

x̂2

x̂3

x̂1

O → m = 0

N → m = 3
2

S → m = − 3
2

x̂2

x̂3

x̂1

m = − 1
2

m = 1
2

Figure 7.2: Fuzzy spheres, S2
1
2
, S2

1, S2
3
2

non-commutativity, the distance between north (N) and south poles (S); also for j = 1 and

j = 3
2 respectively can be obtained as

d 1
2
(N, S) = r 1

2
; d1(N, S) =

√
2 r1 = 1.4142 r1 ; d 3

2
(N, S) =

(1
2
+

2
√

3
3

)
r 3

2
= 1.6547 r 3

2
. (7.40)

This indicates that the fuzzy spheres: S2
1
2
, S2

1, S2
3
2

are highly deformed spaces as the corre-

sponding distances (7.40) are way below the corresponding commutative spheres πr 1
2
, πr1

and πr 3
2

respectively. However, we can expect the commutative results can be obtained in the

limit j→ ∞, i.e., S2
j

j→∞−−→ S2. In the limit j→ ∞, we can take k
j = xk and ∆x = xk − xk−1 = 1

j

as the increment such that ∆x → 0 as j→ ∞.

That is, in the limit j→ ∞, we can write the ratio of distance dj with radius rj as

lim
j→∞

dj(N, S)
rj

= lim
j→∞

2j

∑
k=1

1√
k(2j + 1− k)

= lim
j→∞

2j

∑
k=1

1
j√

k
j (2 +

1
j − k

j )
(7.41)

= lim
∆x→0

x2j=2

∑
x=x1

∆x√
xk(2 + ∆x− xk)

(7.42)

=

2∫
0

dx√
x(2− x)

= 2
1∫

0

dt√
1− t2

= π , (x = 1− t) . (7.43)

This is exactly the ratio between the distance of north pole and south pole of S2 with its

radius [89] which implies that indeed S2
j

j→∞−−→ S2.
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7.1.4 Spectral distance between coherent states

The space of Perelomov’s SU(2) coherent states is constructed in [87] on fuzzy sphere S2
j

which serves as a non-commutative analogue of homogeneous space of S2
j . Such coherent

states along the meridien i.e. the great circle connecting north and south poles are given by

(5.52)

|z〉 = U f (z)|j, j〉 ≡ e−i Ĵ2θ |j〉 = e
θ
2 ( Ĵ−− Ĵ+)|j〉 ; where

θ

2
= tan−1(|z|) , φ = 0. (7.44)

The corresponding pure coherent states on Fj are given by

ωz(a) = tr(ρza) = 〈j|U†
f (z)aU f (z)|j〉 , where ρz = |z〉〈z| = U f (z)|j〉〈j|U†

f (z) . (7.45)

By using the Hadamard identity and putting G(θ) = θ
2 ( Ĵ+ − Ĵ−), we get

U†
f (z)aU f (z) = eG(θ)a e−G(θ) = a + [G(θ), a] +

1
2!
[G(θ), [G(θ), a]] + · · · . (7.46)

7.1.4.1 An upper bound on dj(ωz, ω0) which is unsaturated for finite j

The difference between the pure states ωz and ω0 (note that ω0 ≡ ωρ0 with ρ0 = |j〉〈j| as we

take |j〉 ≡ |z = 0〉) as the highest weight state can be written as

|ωz(a)−ω0(a)| =
∣∣〈j|U†

f (z)aU f (z)− a|j〉
∣∣ = ∣∣〈j|[G(θ), a] +

1
2!
[G(θ), [G(θ), a]]+ · · · |j〉

∣∣. (7.47)

Like in the case of Moyal plane here also, we can introduce a one-parameter family of pure

states:

ρzt = |zt〉〈zt| = U f (zt)|j〉〈j|U†
f (zt) (with t ∈ [0, 1]) , (7.48)

and define the function

W(t) = ωzt(a) = tr(ρzta) = 〈j|U†
f (zt) a U f (zt)|j〉 . (7.49)

Note that we have U f (zt) as

U f (zt) = e−G(θt) , G(θt) =
θt

2
( Ĵ+ − Ĵ−) , where θt = 2 tan−1(|z|t) . (7.50)

We can rewrite (7.47) in terms of this function W(t) (7.49) to get the following inequality

|ωz(a)−ω0(a)| =
∣∣∣∣∣
∫ 1

0

dW(t)
dt

dt

∣∣∣∣∣ ≤
∫ 1

0

∣∣∣dW(t)
dt

∣∣∣dt . (7.51)
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From the computation, we get

∣∣∣dW(t)
dt

∣∣∣ =
|z|

1 + |z|2t2

∣∣∣{[ Ĵ+ − Ĵ−, a] + [G(θt), [ Ĵ+ − Ĵ−, a]] +
1
2!
[G(θt), [G(θt), [ Ĵ+ − Ĵ−, a]]] + · · ·

}∣∣∣
=

|z|
1 + |z|2t2 ωzt

(
[ Ĵ+ − Ĵ−, a]

)
=

|z|
1 + |z|2t2

∣∣∣ωzt
(
[ Ĵ−, a]

)
+ ωzt

(
[ Ĵ−, a]†

)∣∣∣ . (7.52)

Using Cauchy-Schwartz inequality, we get

∣∣∣ωzt
(
[ Ĵ−, a]

)
+ ωzt

(
[ Ĵ−, a]†

)∣∣∣ ≤ √
2
√∣∣ωzt

(
[ Ĵ−, a]

)∣∣2 + ∣∣ωzt
(
[ Ĵ−, a]†

)∣∣2
≤ 2‖[ Ĵ−, a]‖op ≤ 2rj , (7.53)

since every state is bounded as ωzt
(
[ Ĵ−, a]

)
≤ ‖[ Ĵ−, a]‖op and ‖[ Ĵ−, a]‖op = ‖[ Ĵ−, a]†‖op.

Thus, from (7.51), (7.52) and (7.53) , we get

|ωz(a)−ω0(a)| ≤ (2rj)
∫ 1

0

( |z|dt
1 + |z|2t2

)
= 2rj tan−1(|z|) = rjθ (7.54)

That is, the Connes’ spectral distance between two pure states ωz and ω0 is bounded above

by the geodesic distance on S2 as

dj(ωz, ω0) = sup
a∈Bs

|ωz(a)−ω0(a)| ≤ rj θ . (7.55)

This Connes’ spectral distance would have corresponded to geodesic distance on S2 if we

were able to find an optimal element as ∈ A f ≡ Hj saturating this upper bound. However, it

has already been indicated in the previous subsection that spectral distance between north

and south poles on S2
j is always less than the geodesic distance πrj for any finite j (see for

example (7.40)) and reduces to it only in the limit j → ∞ (7.43). Thus, there simply does

not exist any optimal element as saturating the above inequality (7.55) for any finite j. This

feature displays a stark difference between Moyal plane R2
? and fuzzy sphere S2

?. For the

latter case, we shall see later, the notion of conventional geodesics do not exist; we need to

consider interpolating the extremal pure states ω0 ≡ ρ0 and ωz ≡ ρz by a one-parameter

family of suitable mixed states, rather than pure states ρzt (7.48) as we show in the sequel.

7.1.5 Lower bound to the spectral distance between infinitesimally separated continuous pure states

From above computation of the spectral distance between finitely separated coherent states,

we cannot obtain the exact distance function, in absence of any optimal element as satu-

rating (7.55). Moreover, computation using the exact distance formula (6.24) obtained in

chapter 6 involves computation of operator norm i.e. the eigenvalues of matrices of the form:

(A† A)2j×2j (7.16). This is, however, virtually impossible to carry out for any S2
j for large j.

However, we can easily compute the lower bound (6.28) of the distance for a pair of infinites-
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imally separated coherent states for any j. Expectedly, this lower bound distance will differ

from the exact one by just a numerical factor, as in case of Moyal plane.

To that end, let us consider a pair of infinitesimally separated coherent states ωdz ≡ ωρdz

(ρdz = |dz〉〈dz|) and ω0 ≡ ωρ0 (ρ0 = |j〉〈j|). The latter can be taken to correspond to the north

pole. Here,

|dz〉 = U f (dz)|j〉 = e
dθ
2 ( Ĵ−− Ĵ+)|j〉 = |j〉+ dθ

2

√
2j|j− 1〉 . (7.56)

We then introduce the following difference:

dρ = ρdz − ρ0 = |dz〉〈dz| − |j〉〈j| = dθ

2

√
2j(|j〉〈j− 1|+ |j− 1〉〈j|) , (7.57)

We can easily see that ‖dρ‖tr =
√

j dθ and we are left with the computation of ‖[D f , π(dρ)]‖op.

We know that the commutator [D f , π(dρ)] will take the following form in its eigenbasis

(7.7,7.8,7.9) just like (7.14) where the matrix A, given by (7.12). Substituting dρ (7.57) , we get

[D f , π(dρ)] ≡ 1
rj

 0 A

−A† 0

 ; A = dθ


√

j(j + 1
2 ) 0 0

0 −
√

j(j− 1
2 ) 0

−j
√

2 0 0

 . (7.58)

Here, rows (columns) of A are labeled from up to down (left to right) respectively by

|j〉〉+, |j− 1〉〉+, |j− 2〉〉+
(
|j− 1〉〉−, |j− 2〉〉−, | − 3〉〉−

)
. We then get

A† A = j(dθ)2


3j + 1

2 0 0

0 j− 1
2 0

0 0 0

 ⇒ ‖A‖op = dθ

√
j(3j +

1
2
) (7.59)

Thus, we get

‖[D f , π(dρ)]‖op =
1
rj
‖A‖op =

1
rj

dθ

√
j(3j +

1
2
) (7.60)

With this, we get the lower bound to the spectral distance as

dj(ωdz, ω0) ≥
‖dρ‖2

tr
‖[D, π(dρ)]‖op

= rj dθ

√
2j

6j + 1
. (7.61)
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For the specific cases of first three smallest fuzzy spheres : S2
1
2
, S2

1, S2
3
2
, we get

r 1
2

dθ

2
≤ d 1

2
(ωdz, ω0) < r 1

2
dθ ; (7.62)

r1 dθ

√
2
7
≤ d1(ωdz, ω0) < r1 dθ ; (7.63)

r 3
2

dθ

√
3
10
≤ d 3

2
(ωdz, ω0) < r 3

2
dθ . (7.64)

In general, we have the following estimation for spectral distance between a pair of in-

finitesimally separated coherent states, given by ρdz and ρ0:

rj dθ

√
2j

6j + 1
≤ dj(ωdz, ω0) < rj dθ . (7.65)

However, we shall show that it is possible to compute the exact finite and infinitesimal

spectral distance for j = 1
2 coinciding with the lower bound in (7.62) and we can also find

an almost exact distance for j = 1. At the level of infinitesimal distance itself, however, we

get an improvement over and above the lower bound given in (7.63), indicating a non-trivial

role played by the transverse component ∆ρ⊥ in (6.24). Needless to say that this feature with

persist at the level of finite distance computation as well.

7.1.6 Spectral distance on the configuration space of fuzzy sphere S2
1
2

Clearly, for S2
1
2
, the configuration space is F 1

2
= Span{| 12 〉, | − 1

2 〉} and the quantum Hilbert

space H 1
2

consists of elements which are complex 2× 2 matrices. Since we know that the

spectral distance gets saturated by positive elements of the algebra [110], we can consider

only the Hermitian 2× 2 matrices. The elements of H 1
2

have the following form:

a = a0I2 + aiσi ; aµ ∈ R , µ = 0, 1, 2, 3 , I2 → Identity matrix , σi → Pauli matrices . (7.66)

Since the first term including a0 does not survive in the commutator [D f , π(a)], we can dis

regard this term and simply take a0 = 0, without loss of generality. Thus, we have the algebra

elements

a = ~a.~σ =

 a3 a1 − ia2

a1 + ia2 −a3

 ∈ su(2) , ~a ∈ R3 . (7.67)

We can compute the commutator (7.14) for this a (7.67) as follows

[D f , π(a)] ≡ 1
r 1

2

 03×3 A3×1

−A†
1×3 0

 , where A3×1 =


√

2(a1 + ia2)

2a3

−
√

2(a1 − ia2)

 . (7.68)
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Note that A3×1 = 2 +〈〈m|π(a)|m′〉〉− , where m = − 3
2 ,− 1

2 , 1
2 and m′ = − 1

2 and cealrly, we

labeled the rows of A from top to bottom by | − 3
2 〉〉+, | − 1

2 〉〉+, | 12 〉〉+ respectively and the

single column by | − 1
2 〉〉−. Clearly, we get A† A = 4(a2

1 + a2
2 + a2

3) = 4|~a|2, just a number. We

had (7.16) which can be written as

‖[D f , π(a)]‖op =
1
r 1

2

‖A‖op =
2
r 1

2

|~a| ≤ 1 ⇒ |~a| ≤ 1
2

r 1
2

. (7.69)

Interestingly, this reduces to usual ball of radius 1
2 r 1

2
in R3. Now, we want to compute the

spectral distance between a pair of coherent states which are of the form: ωθ(a) = tr(ρθ a) .

For j = 1
2 , we know that all pure states are coherent states [89]. Let us consider the following

pair of pure density matrices (see figure 7.3 for the points N and P):

1. ρN = ρθ=0 =

1

0

(1 0
)
=

1 0

0 0

 .

2. ρP = ρθ0 = U(θ0)

1

0

(1 0
)

U†(θ0) =
1
2

1 + cos θ0 sin θ0

sin θ0 1− cos θ0

,

where U(θ0) =

cos θ0
2 − sin θ0

2

sin θ0
2 cos θ0

2

 ∈ SU(2) .

N → j = 1
2

S → j = − 1
2

x̂2

x̂3

x̂1

P

O

θ
θ0

Q
Q′

Figure 7.3: Space of Perelomov’s SU(2) coherent states for j = 1
2 .

Introducing ∆ρ = ρθ0 − ρ0 which is a traceless Hermitian matrix, we can also expand it as

follows (7.67):

∆ρ = ~∆ρ.~σ , where (∆ρ)1 =
sin θ0

2
; (∆ρ)2 = 0 ; (∆ρ)3 =

−1 + cos θ0

2
. (7.70)

With this, we can write

|ωθ0(a)−ω0(a)| = |tr(∆ρ a)| = 2|~a. ~∆ρ|. (7.71)
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Since both ~a and ~∆ρ ∈ R3, the supremum of |~a. ~∆ρ| will be attained when ~a and ~∆ρ are

parallel or anti-parallel to each other. Thus, with the ball condition (7.69) and (7.70), we get

the spectral distance between ωθ0 and ω0 as

d 1
2
(ωθ0 , ω0) = sup

|~a|≤ r1/2
2

|ωθ0(a)−ω0(a)| = r 1
2

√
(∆ρ)2

1 + (∆ρ)2
3 = r 1

2
sin

θ0

2
. (7.72)

This is just half of the chordal distance connecting NP (see figure 7.3), reproducing the result

of [89]. The corresponding infinitesimal d(ωdθ , ω0) = r 1
2

dθ
2 which is exactly the lower bound

obtained (7.62). It is important to point out in this context that the optimal element as in

this case is associated with the 3-vector ~as ∈ R3 is proportional to ~∆ρ, as we have observed.

Consequently, the lower bound (6.28) itself yields the exact finite distance, with ∆ρ⊥ playing

no role.

Let us now consider a one-parameter family of mixed states {ρt} , 0 ≤ t ≤ 1 (as shown in

the figure 7.3). A generic mixed state ρQ, represented by the point Q on the chord NP inside

the sphere), obtained by the following convex sum:

ρt = (1− t)ρN + tρP =
1
2

2− t(1− cos θ0) t sin θ0

t sin θ0 t(1− cos θ0)

 ; (7.73)

Clearly, ρ0 = ρN and ρ1 = ρP. Introducing (∆ρ)QN = ρt − ρN and (∆ρ)PN = ρP − ρt such

that

((∆ρ)QN)1 =
t sin θ0

2
, ((∆ρ)QN)2 = 0 , ((∆ρ)QN)3 = − t(1− cos θ0)

2

((∆ρ)PN)1 =
(1− t) sin θ0

2
, ((∆ρ)PN)2 = 0 , ((∆ρ)PN)3 = − (1− t)(1− cos θ0)

2
,

we get the spectral distances between the mixed state ωt and ωN and ωP respectively as

d(ωt, ωN) = t r 1
2

sin
θ0

2
and d(ωP, ωt) = (1− t) r 1

2
sin

θ0

2
. (7.74)

The fact that the distance of this mixed state ωt from the extremal, pure states ωN and ωP

are proportional to the parameters t and (1− t) respectively indicates that we can identify

a unique pure state Q′ (see fig 1) nearest to a given mixed state Q just by extending the

straight line OQ from the center O to the surface of the sphere. This distance can therefore

be used alternatively to characterize the ‘mixedness’ of a spin-1/2 system. Further, we have

d(ωθ0 , ω0) = d(ωP, ωN) = d(ωP, ωt) + d(ωt, ωN). (7.75)
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This is just analogous to (6.91), except that the intermediate state ωt is not pure. This

chord cannot therefore be identified as a conventional geodesic. This same family can be

parametrised alternatively [89] as

ρθ =
1
2
(12 +~σ.~nθ) =

1
2

 1 + |~nθ | cos θ |~nθ | sin θ

|~nθ | sin θ 1− |~nθ | cos θ

 (7.76)

where, |~nθ | is the magnitude the vector ~nθ parametrising each of the mixed states between

the two extremal pure states and is given by

~nθ = |~nθ |
(

sin θ, 0, cos θ

)
(7.77)

Clearly, |~nθ | is strictly less than 1 : |~nθ | < 1 except for the extremal pure states at θ = 0

and θ = θ0. Further the mixed state ρθ for the open interval (0, θ0) represents a point Q in

the chord connecting the north pole N(θ = 0) and point P(θ = θ0), and therefore lies in the

interior of the sphere. Indeed, these two different parameters t and θ for the same state can

be related by setting ρθ = ρt, to get

t =
1− |~nθ | cos θ

1− cos θ0
=
|~nθ | sin θ

sin θ0
⇒ |~nθ | =

cos
(

θ0
2

)
cos
(

θ − θ0
2

) ≡ OQ
r1/2

, ON = OP = r1/2. (7.78)

Thus, we can recast the spectral distance between mixed state represented by ρθ and the

pure states ρN and ρP (7.74) respectively as

d(ωθ , ωN) =
r 1

2
sin θ

2 cos
(

θ − θ0
2

) and d(ωP, ωθ) =
r 1

2
sin(θ0 − θ)

2 cos
(

θ − θ0
2

) . (7.79)

For the case θ = θ0, we get d(ωθ0 , ωN) = r 1
2

sin θ0
2 and d(ωP, ωθ0) = 0.

Finally, we can also obtain the distance between pure states represented by ρπ =

0 0

0 1


(South pole S) and ρθ0 (P) as

d(ρπ, ρθ0) = r 1
2

cos
θ0

2
. (7.80)

This implies that

[d(ρ0, ρθ0)]
2 + [d(ρπ, ρθ0)]

2 = r2
1/2. (7.81)

That is, the Pythagoras identity (NP2 + SP2 = NS2) is obeyed.

All these features, however, will not persist for higher ‘n’, as we shall see.
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7.1.6.1 Analogy with CP1 model and mixed states

For the spectral triple (5.30), the space of vector states is CP1 [110] which we have reviewed

in section 5.6 of chapter 5. We had parametrized a pair of CP1-doublets, associated to the

pair of points lying in the same latitude (i.e. the same polar angle θ) [82] as

χ =

sin θ
2 eiφ

cos θ
2

 −→ ρ = χχ†; χ′ =

sin θ
2 eiφ′

cos θ
2

 −→ ρ′ = χ′χ′†. (7.82)

The spectral distance between these two points is obtained as (5.41)

d(ωρ′ , ωρ) =
2 sin θ

|D1 − D2|
∣∣∣ sin

(φ− φ′

2

)∣∣∣. (7.83)

which corresponds to the distance measured along the chord connecting the pair of points

(θ, φ) and (θ, φ′), at the same latitude θ. Recall that the distance between a pair of states

belonging to different lattitudes (θ 6= θ′) diverges.

Again, let us define a one-parameter family of mixed states out of this pair of pure states

ρ and ρ′, in an analogous way as defined for n = 1/2 representation (7.73), as

ρt = (1− t)ρ + tρ′. (7.84)

Similarly, we obtain the distances between the mixed state ρt and the corresponding pure

states ρ representing the point (θ, φ) and ρ′ representing (θ, φ′) as

d(ωρt , ωρ) = t
2 sin θ

|D1 − D2|
∣∣∣ sin

(φ− φ′

2

)∣∣∣; and d(ωρ′ , ωρt) = (1− t)
2 sin θ

|D1 − D2|
∣∣∣ sin

(φ− φ′

2

)∣∣∣.
(7.85)

Clearly, we have

d(ωρ′ , ωρ) = d(ωρ′ , ωρt) + d(ωρt , ωρ). (7.86)

7.1.7 Spectral distance on the configuration space of fuzzy sphere S2
1

The computation of spectral distance on S2
1 j = 1 is expected to be much more complicated

than the computation on S2
1
2

because here the algebra H1 consists of complex 3× 3 matrices.

Here, just like for the case of j = 1
2 , we will consider only the Hermitian traceless complex

3× 3 as the identity matrix I3 commutes with the Dirac operator and hence will give no

contribution in the operator norm ‖[D, π(a)]‖op. The algebra element with some extra re-

strictions provide us with a simple expression of the distance using (6.9), which we then

corroborate with a more rigorous calculation using (6.24). The role of ∆ρ⊥ turns out to be

very important in (6.24) for j = 1 fuzzy sphere and we employ the most general form of
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∆ρ⊥ possible to improve the estimate of the spectral distance as best as we can from the

lower bound (6.28). The determination of an exact value, even with the help of Mathematica,

remains a daunting task.

7.1.7.1 Ball condition using Dirac eigenspinors

For j = 1, the positive and negative eigenspinors (7.7) of Dirac operator D f have the ranges:

−2 ≤ m ≤ 1 and −1 ≤ m′ ≤ 0 respectively such that the commutator (7.14) takes following

off-block diagonal form:

[D, π(a)] =
1
r1

 04×4 A4×2

−A†
2×4 02×2

 , (7.87)

where A4×2 = 3 +〈〈j, m|π(a)|j, m′〉〉− (7.12) and A†
2×4 = 3 −〈〈j, m′|π(a)|j, m〉〉+ (7.13) take

the following forms:

A4×2 =


−
√

3a1,0 −
√

6a1,−1
√

2(a1,1 − a0,0) (a1,0 − 2a0,−1)

(2a0,1 − a−1,0)
√

2(a0,0 − a−1,−1)
√

6a−1,1
√

3a−1,0

 ; (7.88)

A†
2×4 =

 −√3a0,1
√

2(a1,1 − a0,0) (2a1,0 − a0,−1)
√

6a1,−1

−
√

6a−1,1 (a0,1 − 2a−1,0)
√

2(a0,0 − a−1,−1)
√

3a0,−1

 . (7.89)

Note that here am,n are the usual matrix elements 〈m| a |n〉, with m, n ∈ {1, 0,−1}. Using

above result for [D, π(a)] we readily obtain:

[D, π(dρ)]†[D, π(dρ)] =
1
r2

1

 (AA†)4×4 04×2

02×4 (A† A)2×2

 . (7.90)

By exploiting the property of operator norm one has the freedom to choose between the

two block-diagonal square matrices as 1
r2

1
‖AA†‖op = 1

r2
1
‖A† A‖op = ‖[D, π(a)]†[D, π(a)]‖op =

‖[D, π(a)]‖2
op. We choose to work with the more convenient one i,e the 2× 2 matrix (A† A)2×2

which turns out to be:

M := (A† A)2×2 =

M11 M12

M∗12 M22

 (7.91)
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where,

M11 = 3|a0,1|2 + 2(a0,0 − a1,1)
2 + |a0,−1 − 2a1,0|2 + 6|a1,−1|2

M22 = 3|a0,−1|2 + 2(a0,0 − a−1,−1)
2 + |a1,0 − 2a0,−1|2 + 6|a1,−1|2

M12 =
√

2 {3a1,−1(a0,1 + a−1,0) + (a0,0 − a1,1)(2a0,−1 − a1,0) + (a0,0 − a−1,−1)(2a1,0 − a0,−1)}
.

This matrix M has the following two eigenvalues E± which can be obtained by solving a

quadratic equation to get,

E± :=
1
2

(
P±

√
Q
)
=

1
2

(
(M11 + M22)±

√
(M11 −M22)2 + 4|M12|2

)
. (7.92)

Here, both P and Q can be written as a sum of several whole square terms and thus they are

both positive definite for any algebra elements a. Clearly,

E+ ≥ E− ∀ a ∈ B (7.93)

yielding, for a particular a ∈ B,

‖[D, π(a)]‖op =
1
r1

√
E+. (7.94)

Now the corresponding infimum infa∈B‖[D, π(a)]‖op is computed by varying the entries

in the algebra elements, within the admissible ranges and obtaining the global minimum of

E+. This gives

inf
a∈B
‖[D, π(a)]‖op =

1
r1

min
(√

E+

)
=

1
r1

√
min(E+) (7.95)

Now the eigenvalue E+ will always have a “concave-up" structure in the parametric space

as it can be written as the sum of square terms only (7.91,7.92). There can be points in

the parametric space where E+ and E− are equal, namely points where Q becomes 0, but

since E+ can not become less than E−, determining the minimum of E+ will alone suffice

in calculating the infimum of the operator norm as is clear from (7.94). So we work with E+

alone and take the help of Mathematica again to get the desired result.

7.1.7.2 General form of ∆ρ

The pure states corresponding to points on the fuzzy sphere S2
1 can be obtained by the action

of the SU(2) group element:

Û = eiθ Ĵ2 =


cos2 θ

2
1√
2

sin θ sin2 θ
2

− 1√
2

sin θ cos θ 1√
2

sin θ

sin2 θ
2 − 1√

2
sin θ cos2 θ

2

 (7.96)
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on the pure state |1〉〈1| corresponding to the north pole (N) of S2
1 : ρθ = Û |1〉〈1| Û†. Note that

we have taken for convenience the azimuthal angle φ = 0. This can be done without loss of

generality. Correspondingly,

∆ρ = ρθ − ρ0 = Û|1〉〈1|Û† − |1〉〈1|

=


cos4 θ

2 − 1 − 1√
2

sin θ cos2 θ
2 sin2 θ

2 cos2 θ
2

− 1√
2

sin θ cos2 θ
2

1
2 sin2 θ − 1√

2
sin θ sin2 θ

2

sin2 θ
2 cos2 θ

2 − 1√
2

sin θ sin2 θ
2 sin4 θ

2

 . (7.97)

Clearly, all entries are real here just like the case of j = 1
2 (7.70); indeed by writing ∆ρ =

(∆ρ)iλi (λi’s are the Gell-Mann matrices) the coefficients of λ2, λ5 and λ7 vanishes. This ∆ρ

however only provides us with a lower bound (6.28) of the distance in Connes’ formula and

the actual distance is reached by some optimal algebra element (aS) of the form

as = ∆ρ + κ∆ρ⊥ ; tr(∆ρ ∆ρ⊥) = 0, (7.98)

for which the infimum is reached in (say in (6.24)). This should be contrasted with the

optimal element, for which the supremum is reached in (7.55). In any case, let us first try to

have an improved estimate of the upper bound of the distance. This will be followed by the

computation involving ∆ρ⊥.

7.1.7.3 An improved but realistic estimate using Gell-mann matrices

The upper bound for the spectral distance, obtained previously in (7.55) corresponded to

that of a commutative sphere S2, but that lies much above the realistic distance for any fuzzy

sphere S2
j associated to the j-representation of SU(2), as discussed in section 6.2. It is there-

fore quite imperative that we try to have a more realistic estimate of this where this upper

bound will be lowered considerably. At this stage, we can recall the simple example of H2-

atom, where the energy gap between the ground state (n = 1) and first excited state (n = 2)

is the largest one and the corresponding gaps in the successive energy levels go on decreas-

ing and virtually become continuous for very large n (n � 1). One can therefore expect a

similar situation here too. Indeed, a preliminary look into the distance between north and

south poles (7.40) already support this in the sense that
(

d3/2(N,S)/r3/2

)(
d1(N,S)/r1

) <

(
d1(N,S)/r1

)(
d1/2(N,S)/r1/2

) . One

can therefore expect the distance function d1(ρ0, ρθ) to be essentially of the same form as that

of d 1
2
(ρ0, ρθ), except to be scaled up by a

√
2-factor (7.40) and a miniscule deformation in the

functional form. For large-values of j, the corresponding ratios
(

dj(N,S)/rj

)(
dj−1(N,S)/rj−1

) → 1, and the

functional deformations are expected to be pronounced over a large variation in j. However,

the exact determination of this form is extremely difficult and we will have to be contended

with a somewhat heuristic analysis in this sub-section and a more careful analysis, using

(6.27) in the next subsection. To that end, we start here with the most general form of algebra
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element a, as a linear combination of all the 8 Gell-Mann matrices (λi) as follows and look

for an optimal element form a ∈ B giving sup |(∆ρ, a)|, with some additional restrictions

which are to be discussed later. We write

a = xiλi =


x3 +

x8√
3

x1 − ix2 x4 − ix5

x1 + ix2 −x3 +
x8√

3
x6 − ix7

x4 + ix5 x6 + ix7 − 2x8√
3

 , (7.99)

in analogy with (7.67) in j = 1
2 , S2

1
2
. Again the rows/columns are labeled from top to bot-

tom/left to right by
(
〈1|, 〈0|, 〈−1|

)
/
(
|1〉, |0〉, | − 1〉

)
. Now we calculate tr(∆ρa) using the ∆ρ

matrix (7.97) and the above algebra element (7.99) to get

tr(∆ρ a) =

(
x3 +

x8√
3

)(
cos4 θ

2
− 1
)
− 2x8√

3
sin4 θ

2
+

x4

2
sin2 θ +

1
2

sin2 θ

(
x8√

3
− x3

)
−
√

2 sin θ

(
x1 cos2 θ

2
+ x6 sin2 θ

2

)
. (7.100)

This clearly demonstrates the expected independence of imaginary components viz. x2, x5

and x7. We therefore set x2 = x5 = x7 = 0 to begin with. This simplifies the matrix elements

of M (7.91), using (7.99), as,

M11 = 3x2
1 + 6x2

4 + 8x2
3 + (x6 − 2x1)

2 (7.101)

M22 = 3x2
6 + 6x2

4 + (x1 − 2x6)
2 + 2

(√
3x8 − x3

)2
(7.102)

M12 =
√

2
(

3x4(x1 + x6) + 2x3(x1 − 2x6)− (2x1 − x6)
(

x3 −
√

3x8

))
(7.103)

Like-wise the above expression (7.100) simplifies as

|tr(∆ρ a)| =

∣∣∣∣∣
[

sin
( θ

2

){
sin
( θ

2

){
x3 + 3x3 cos2

( θ

2

)
+
√

3x8 sin2
( θ

2

)}
+ cos

( θ

2

){
2
√

2x1 cos2
( θ

2

)
+2
√

2x6 sin2
( θ

2

)
− 2x4 sin

( θ

2

)
cos

( θ

2

)}}]∣∣∣∣∣ . (7.104)

Since our aim is to obtain a simple form of the “Ball" condition and eventually that of

Connes spectral distance (6.24) so that we might obtain an improved estimate for the spectral

distance over the lower bound (6.28), obtained by making use of ∆ρ (7.97) and more realistic

than (7.63). We shall see shortly that with few more additional restrictions, apart from the

ones (like vanishing of x2, x5 and x7 imposed already) it is possible to simplify the analysis

to a great extent, which in turn yields a distance estimate which has a same mathematical

structure as that of the exact distance (7.72) for j = 1/2 case upto an overall factor. To that

end, we impose the following new constraints:

x1 = x6; x3 =
x8√

3
; x4 = 0, (7.105)
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as a simple observation of (7.104) suggests that it simplifies it even further to the following

form:

|tr(∆ρ a)| =
∣∣∣[ sin

( θ

2

){
4x3 sin

( θ

2

)
+ 2
√

2x1 cos
( θ

2

)}]∣∣∣ = 2
√

2
√

x2
1 + 2x2

3

∣∣∣ sin
( θ

2

)
cos

(
ζ− θ

2

)∣∣∣,
(7.106)

where cos ζ = x1√
x2

1+2x2
3

and sin ζ =
√

2x3√
x2

1+2x2
3

. Moreover, putting the above constraints

(7.105) in the equation (7.101)- (7.103), we get

M11 = M22 = 4x2
1 + 8x2

3 ; M12 = 0. (7.107)

With this, the eigenvalue E+ (7.92) and the corresponding ball condition (7.94) can be ob-

tained as

E+ = 4x2
1 + 8x2

3 ⇒ ‖[D, π(a)]‖op =
1
r1

2
√

x2
1 + 2x2

3 ≤ 1. (7.108)

Putting this ball condition on the above (7.106), we get

|tr(∆ρ a)| ≤
√

2r1 sin
( θ

2

)
cos

(
ζ − θ

2

)
. (7.109)

Hence, a suggestive form of the spectral distance between a pair of pure states ρ0 = |1〉〈1|
and ρθ = U|1〉〈1|U† for j = 1 representation can be easily obtained by identifying the

optimal value of the last free parameter ζ to be given by ζ = θ
2 . This yields

da
1 = sup

a∈B

{
|tr(∆ρa)|

}
=
√

2r1 sin
( θ

2

)
. (7.110)

The corresponding form of the optimal algebra element as is obtained after a straightforward

computation to get

âs =
r1

2


√

2 sin
(

θ
2

)
cos

(
θ
2

)
0

cos
(

θ
2

)
0 cos

(
θ
2

)
0 cos

(
θ
2

)
−
√

2 sin
(

θ
2

)
 . (7.111)

When θ = π, the distance is exactly the same between the two pure coherent states |1〉〈1|
and | − 1〉〈−1| and the above distance (7.110) gives da

1(ρ0, ρπ) =
√

2r1 which exactly matches

with the one (7.40), computed using the discrete formula (7.39).

Note that we have made use of all the restrictions x2 = x4 = x5 = x1 − x6 = x3 − x8√
3
= 0

and ζ = θ
2 , imposed at various stages. Finally, we would like to mention that this simple form

(7.110) was obtained by imposing the above ad-hoc constraints resulting in M11 − M22 =

M12 = 0. Consequently, one cannot expect, a priori this to reflect the realistic distance either.

At best, this can be expected to be closer to the realistic one, compared to (7.63). The only
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merit in (7.110) being that it has essentially the same structure as that of (7.72) for j = 1
2 case.

Nevertheless, as we shall show below that the computation involving ∆ρ⊥, using (6.24),(6.27)

matches with (7.110) to a great degree of accuracy.

Note that we are denoting the analytical distanceas as (da), to distinguish it from other

distances to be calculated in the next section. Also note that since the analytical distance

(7.110) has the same form (7.72), it therefore corresponds to
√

2-times the half of chordal

distance. Further, it satisfies the Pythagoras equality (7.81) just like the n = 1
2 case.

Before we conclude this subsection, we would like to point out that we could have perhaps

reversed our derivation by simply requiring the matrix M (7.91) to be diagonal: M12 = 0. But

in that case E+ = max
{

M11(a), M22(a)
}

for a particular choice of algebra element, satisfying

the aforementioned conditions viz x2 = x5 = x7 = M12 = 0. Now given the structures of M11

(7.101) and M22 (7.102) they will have shapes which are concave upwards, when the hyper-

surfaces are plotted against the set of independent parameters occurring in ‘a’ ∈ R, whereR
represents the sub-region in the parameter space, defined by these conditions. Now it may

happen that M11(a) 6= M22(a), ∀ a ∈ R, in which case one of them, say M11(a), exceeds the

other: M11 > M22. Then clearly

inf
a∈R
‖[D, π(a)]‖op =

1
r1

√
mina∈R(M11). (7.112)

Otherwise, the hyper-surfaces given by M11(a) and M22(a) will definitely intersect and

(7.112) will reduce to

inf
a∈R̄
‖[D, π(a)]‖op =

1
r1

√
mina∈R̄(M11) =

1
r1

√
mina∈R̄(M22). (7.113)

where R̄ ⊂ R represents the sub-region where M11(a) = M22(a). In fact, this is a scenario,

which is more likely in this context, as suggested by our analysis of infinitesimal distance

presented in the next subsection (see also Fig. 2). We therefore set also M11 = M22. With the

additional condition like x1 = x6 (7.105), we can easily see that one gets, apart from (7.105),

another set of solutions like,

x1 = x6, x3 = −
√

3x8, x4 = − 2√
3

x8. (7.114)

This, however, yields the following ball condition√
x2

1 + 8x2
8 ≤

r1

2
, (7.115)

the counterpart of (7.108), and in contrast to (7.106), cannot in anyway be related to its

counterpart here, given by

|tr(∆ρa)| =
√

2
3

sin θ
(√

2x8 sin θ −
√

3x1
)
. (7.116)
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We therefore reject (7.114) from our consideration, as it will not serve our purpose.

7.1.7.4 Spectral distance using ∆ρ⊥

In this section we will employ the modified distance formula (6.24) by constructing a most

general form of ∆ρ⊥ for both finite as well as infinitesimal distances. We show that in both of

the cases the distance calculated using this more general (numerical) method matches with

the corresponding result given by da (7.110) to a very high degree of accuracy suggesting

that da should be the almost correct distance for arbitrary θ.

Infinitesimal distance : In this case the dρ takes a simpler form by expanding (7.97)

and keeping only upto the first order in the infinitesimal angle dθ , we get

dρ = ρdθ − ρ0 = − dθ√
2

(
|1〉〈0 | + |0〉〈1 |

)
. (7.117)

The most general structure of the transverse part dρ⊥ here is obtained by taking all possible

linear combinations of generic state like | i〉〈 j | i.e.

dρ⊥ = ∑
i , j

Ci j | i〉〈 j | ; i , j ∈ {−1, 0, +1} , (7.118)

where Ci j = C∗j i because of the hermiticity of dρ⊥ . Clearly, the complex parameters Ci j

are exact analogues of suitable combinations of x i ’s in (7.99). The orthogonality condition

(7.98) here requires the coefficient C10 to be purely imaginary. Moreover we can demand that

the matrix representation of ∆ρ⊥ should be traceless as discussed in section 7.1.7. We thus

impose C11 + C22 + C33 = 0. To better understand the significance of each term we write

(7.118) in matrix form as follows:

dρ⊥ =


µ1 iα1 γ

− iα1 µ0 β

γ∗ β∗ −(µ1 + µ0 )

 ; µ1 , µ0 , µ−1 , α1 ∈ R and β , γ ∈ C. (7.119)

With this our optimal algebra element aS (7.98) would become:

aS =


µ1 − dθ√

2
+ iα1 γ

− dθ√
2
− iα1 µ0 β

γ∗ β∗ −(µ1 + µ0 )

 (7.120)

where we have absorbed κ inside the coeffiecients of dρ⊥ (7.119). With 7 independent pa-

rameters, it is extremely difficult to vary all the parameters simultaneously to compute the

infimum analytically. However, as far as infinitesimal distances are concerned, it may be

quite adequate to take each parameter to be non-vanishing one at a time. Thus, by keeping
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one of these diagonal/complex conjugate pairs like β and γ to be non-zero one at a time

and computing the eigen values of the 2 × 2 matrix (7.91) using (7.98), (7.117) and (7.119),

it is found that only the real part of β to be contributing non-trivially to the infimum of

the operator norm ‖ [D , π (a)]‖op in the sense that the operator norm of this object with

aS =


0 − dθ√

2
0

− dθ√
2

0 β

0 β∗ 0

 in (7.98) is a monotonically increasing function of I m(β) but

yields a non-trivial value for the infimum which is less than the one with vanishing β i.e. dρ

itself. Like-wise, both real and imaginary parts of γ and α1 in (7.119) do not contribute to

the infimum. On computation, we get

A

B

M
22

M11

-1.0 -0.5 0.5 1.0

2

4

6

8

10

Figure 7.4: Infimum corresponding to the plots of M11/(dθ)2 and M22/(dθ)2 vs β1/dθ

‖[D, π(a)]‖op =
1
r1

√
max{M11, M22} , (7.121)

where M11 = β2
1 + 2

√
2β1dθ +

7
2

dθ2 and M22 = 7β2
1 + 2

√
2β1dθ +

1
2

dθ2;

where β1 = Re(β) and the 2× 2 matrix (7.91) takes a diagonal form diag{M11, M22} thus

yielding eigenvalues trivially (7.121). From the plot of these eigen values(see figure 7.4) it

is clear that the infimum of the operator norm over the full range of β1 is given by the

minimum value of the two intersections at A (β1 = − dθ√
2
) and B (β1 = + dθ√

2
) which comes

out to be
√

2dθ
r1

i.e. ‖[D, π(a)]‖op =
√

2dθ
r1

. Note that in this context

E+ =

M22, for β1 < − dθ√
2

and β1 > + dθ√
2

i.e. left of A and right of B

M11, for − dθ√
2
< β1 < + dθ√

2
i.e. in between A and B.

.

Also since ‖dρ‖2
tr = dθ2, as follows from (7.117), the infinitesimal spectral distance (6.24) is

given by

d1(ρdθ , ρ0) = r1
dθ√

2
. (7.122)
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We now corroborate the same result by varying all the 7 parameters simultaneously. Of

course we shall have to employ Mathematica now. To that end, first note that P, Q (7.91, 7.92)

are now given as:

P = 2{1 + µ2
1 + 2β2

1 + 3α2 + 4µ2
0 + 6|γ|2 + (µ1 + µ0)

2 + (
√

2β1 + 1)2 + (2β2 − α)2} (7.123)

Q = 9{−1 + 4µ0µ1 + 2(|β|2 + µ2
0 − α2)}2 + 4{3(µ0 + µ1 + γ1) + 4.242(β1µ1 − β2γ2 − αγ2 − β1γ1)}2

+4{3γ2 + 4.242(β2µ1 + β2γ1 + αγ1 − β1γ2 − αµ0 − αµ1)}2, (7.124)

where β = β1 + iβ2 and γ = γ1 + iγ2. Interestingly enough we get the same infimum i.e.

2dθ2 by finding the minimum of the eigenvalue E+ as discussed in section 7.1.7.1 with the 7

parameter eigenvalue (7.92) where P and Q are given by (7.123,7.124). We therefore recover

the distance (7.122) which also matches with (7.110) for θ → dθ.

finite distance For any finite angle θ, the ∆ρ matrix (7.97) can be directly used to

compute the square of the trace norm ‖∆ρ‖2
tr. Moreover, this ∆ρ can be used as the algebra

element a to compute the eigenvalues of (7.92) and then the operator norm ‖[D, π(a)]‖op,

yielding the lower bound for the spectral distance using (6.28). More specifically for θ = π
2

(i.e. the distance between the north pole N and any point E on equator) the lower bound is

found to be

d1(N, E) ≥ 0.699r1 (7.125)

Contrasting with the corresponding value (7.110) of da
1 =
√

2r1 sin
(

π
4

)
= r1, we see that

the transverse component ∆ρ⊥ must play a vital role here. On the other hand for θ = π (i.e.

distance between north and south pole) we find d(N, S) =
√

2 r1 which matches exactly with

the result of (7.40) for the distance between discrete states |1〉〈1| and | − 1〉〈−1|. This means

that there is no contribution of ∆ρ⊥ to this distance for θ = π. There are however non-trivial

contribution from ∆ρ⊥ in the distance for any general value of angle 0 < θ < π as we have

illustrated above through the example of θ = π
2 . Now the most general ∆ρ⊥ in this case can

be constructed as follows:

∆ρ⊥ = [µ1 |1〉〈1|+ µ0 |0〉〈0| + µ−1 |−1〉〈−1|+ α |1〉〈0|+ α∗ |0〉〈1|
+γ |1〉〈−1|+ γ∗ |−1〉〈1|+ β |0〉〈−1| |+ β∗ |−1〉〈0|]

(7.126)

where µ1, µ0, µ−1 ∈ R. Again we can take aS (7.98) to be traceless as before, which implies

µ1 + µ0 + µ−1 = 0 and we can eliminate one of them, say µ−1. Further imposing the orthogo-

nality condition (7.98) we have a relation between all the remaining 8 parameters and one of
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them can be eliminated from that. In this case, using the ∆ρ (7.97) and ∆ρ⊥ (7.126) in (7.98)

while absorbing κ inside the coefficients of ∆ρ⊥, we have

tr
(

∆ρ ∆ρ⊥
)
= 0 =⇒ µ1 = −1

2
µ0 sin2

(
θ

2

)
− 1√

2
β1 sin θ + cos2

(
θ

2

)(
γ1 + µ0 −

√
2α1 cot

θ

2

)
(7.127)

where α1, β1 and γ1 are the real components and α2, β2 and γ2 are the imaginary compo-

nents of α, β and γ respectively. With these substitutions the eigenvalues of the matrix (7.91)

become a function of 7 parameters. We now calculate P,Q (7.92) for θ = π
2 case to get

P = 5 +
45
4

µ2
0 + 8(|α|2 + |β|2) + 2(α2

1 + β2
1) + γ2

1 + 12|γ|2 − 4γ1 + 6µ0

− 3
√

2µ0(β1 + α1)− 4α1β1 + 3γ1µ0 − 2
√

2γ1(β1 + α1)− 8α2β2 ; (7.128)

Q = 9
[{

1 + 2|α|2 − 3µ2
0 − 2|β|2 − γ1 +

1
2

µ0 + 2
√

2β1 − 2µ0γ1 + 2
√

2µ0(α1 + β1)
}2

+
1
2

{(√
2 + 2

√
2α2

1 − 2
√

2β2
1 + 2

√
2γ1 − 4β1 +

√
2µ0 + µ0β1 − 4γ2β2 − 6γ1α1 − 4γ2α2 − 5α1µ0

)2

+
(
2β2 − 2

√
2γ2 − 2α2 − 6γ1β2 − 2

√
2α1α2 + 4α1γ2 + 2

√
2α1β2 + β2µ0 + 4γ2β1

+ 2
√

2β1β2 − 2γ1α2 + 5α2µ0 − 2
√

2β1α2
)2
}]

. (7.129)

We now minimize E+ as before to get

d(N, E) = r1 (7.130)

which exactly matches with the result of (7.110), which is quite remarkable. As for θ = π,

the terms P,Q (7.92) of eigen values E± comes out to be

P = 4 + 9µ2
0 + 8(|α|2 + |β|2) + 12|γ|2 − 8(α1β1 + α2β2) (7.131)

Q = 36
(
|β|2 − |α|2 − 2µ0

)2
+ 18

[{
(β1 + α1)(2γ1 + µ0) + 2(β1 − α1) + 2γ2(α2 + β2)

}2

+
{
(β2 + α2)(2γ1 − µ0)− 2(β2 − α2)− 2γ2(α1 + β1)

}2]
(7.132)

Again we need to calculate the spectral distance by minimizing E+ which gives d1(ρθ=π, ρ0) =√
2r1. This is precisely the lower bound result d1(N, S) (7.63) as discussed previously and

hence support our claim that ∆ρ⊥ will not contribute here at all. For arbitrary angle θ, we

present here [see table 1] both the distances i.e. the one calculated using the formula (7.110)

and another one calculated using the global minima of eigenvalue E+ (say d1) for various

angles between 0 to π.
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Angle (degree) da
1/r1 d1/r1

10 0.1232568334 0.1232518539

20 0.2455756079 0.2455736891

30 0.3660254038 0.3660254011

40 0.4836895253 0.4836894308

50 0.5976724775 0.5976724773

60 0.7071067812 0.7071067811

70 0.8111595753 0.8111595752

80 0.9090389553 0.9090389553

90 1 0.9999999998

100 1.0833504408 1.0833504407

110 1.1584559307 1.1584559306

120 1.2247448714 1.2247448713

130 1.2817127641 1.2817127640

140 1.3289260488 1.3289260487

150 1.3660254038 1.3660254037

160 1.3927284806 1.3927284806

170 1.4088320528 1.4088320527

Table 7.1: Data set for various distances corresponding to different angles

It is very striking that the distance da
1 (7.110) matches almost exactly with d1 for all these

angles as one see from the table 1. This strongly suggests that (7.110) is indeed very very

close to the exact distance! In fact, for larger angles like 50◦ and above the results agree

upto 9 decimal places, whereas for smaller angles (< 50◦) they agree upto 5 decimal places

and show some miniscule deviations from 6 decimal point onwards. One can expect to see

more pronounced deformations in the functional form, away from the like of (7.110), when

the overall scale of magnification of size will start reducing monotonically with n → ∞ and

eventually merge with commutative results.

7.2 spectral triple and distance on quantum hilbert space of fuzzy sphere

Here we present our final computation of the infinitesimal distance on the quantum Hilbert

spaceHq. This is the counterpart of the computation, presented in section 6.4 for Moyal plane

and here too the presence of additional degrees of freedom will be exploited to uncover

an intriguing connection between geometry and statistics. The quantum Hilbert space is
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spanned by the Hilbert-Schmidt operators acting on the fuzzy sphere described by Fj. That

is,

Hj = Span
{
|j, m〉〈j, m′| ≡ |m, m′) : trc(Ψ†Ψ) < ∞

}
. (7.133)

Since we consider a particular fuzzy sphere indexed by j, we have suppressed the index j

above and by taking analogy with the case of Moyal plane, we can construct the spectral

triple for this case as:

1. The Algebra A = Span
{
|m, m′)(l, l′| : −j ≤ m, m, l, l′ ≤ j , with j being fixed

}
.

2. The Hilbert space H = Hj ⊗C2 =

{|m, m′)

|l, l′)

} .

3. Dirac operator D = 1
rj
~̂J ⊗~σ ,

where the action of Ĵi on Hq is given in (D.39).

In this case, we can define spectral distance between both pure and mixed states of the

algebra. First consider the pure states of the algebra A corresponding to the density matrices

ρq(m, m′) = |m, m′)(m, m′| and ρq(m+ 1, l′) = |m+ 1, l′)(m+ 1, l′|. Then we have the operator

dρq = |m+ 1, l′)(m+ 1, l′| − |m, m′)(m, m′|, which should reproduce the infinitesimal distance

between states computed earlier in (7.27) when we take m′ = l′. To this end, let us begin by

computing

[D f , π(dρq)] =
1
rj

 0 1
θ f
[X̂−, dρq]

1
θ f
[X̂+, dρq] 0

 , (7.134)

so that

[D f , π(dρq)]
‡[D f , π(dρq)] =

1
r2

j

 1
θ2

f
[X̂−, dρq]‡[X̂−, dρq] 0

0 1
θ2

f
[X̂+, dρq]‡[X̂+, dρq]

 . (7.135)

Here, X̂i and X̂± (2.65) are the position operators and the corresponding ladder operators

acting on Hq.

After computation, we get

‖[D f , π(dρq)]‖op =


2
√

[j(j+1)−m(m+1)]

θ f
√

j(j+1)
, if m′ = l′.

√
[j(j+1)−m2+|m|]

θ f
√

j(j+1)
, otherwise.

(7.136)
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Since here we also have trq(dρq)2 = 2, we get the infinitesimal distance on the quantum

Hilbert space by using a formula with the same form as that of (??):

d(ρq(m + 1, l′), ρq(m, m′)) =


θ f
√

j(j+1)√
[j(j+1)−m(m+1)]

, if m′ = l′.

2θ f
√

j(j+1)√
[j(j+1)−m2+|m|]

, otherwise.
(7.137)

This shows that just like in the Moyal case [79] the distance on quantum Hilbert space Hj

of the fuzzy sphere depends on the right hand sectors and it increases when the right hand

sectors are taken differently, although the Dirac operator acts only on the left hand sector.

This motivates us to consider a more general situation where the density matrices are of

the mixed form, given by

ρq(m) = ∑
l

Pl(m) |m, l)(m, l|, ∑
l

Pl = 1, ∀ m. (7.138)

Clearly Pl are probabilities that are position-dependent. As mentioned in [79], the distance

formula (6.28) will yield the true Connes’ distance between the mixed states for which the

probabilities Pl are position independent.

However, instead of using the operator norm to calculate the infinitesimal distance, one

can use trace norm which will give the closely related distance function

d̃(ρq(m + 1, ρq(m)) =
trc(dρq)2

‖[D, π(dρq)]‖tr
. (7.139)

This distance given by (7.139) will expectedly be different from the Connes infinitesimal

distance given by (6.28) by a numerical factor only so we can employ (7.139) instead of (6.28)

for computational simplicity.

Now, introducing dρq(m + 1, m) = ρq(m + 1)− ρq(m), we can compute the closely related

distance function between the mixed states on the subspace Hj of quantum Hilbert space

using the formula (7.139). After the straightforward computation, we get

trq(dρq(m + 1, m))2 = ∑
l

[
P2

l (m + 1) + P2
l (m)

]
, (7.140)

‖[D, π(dρq(m + 1, m))]‖tr =
2
rj

√
∑

l
[P2

l (m + 1)s1 + P2
l (m)s2 + Pl(m + 1)Pl(m)s3], (7.141)

where, s1 = {j(j + 1)− (m + 1)2} ;

s2 = {j(j + 1)−m2} ;

s3 = {j(j + 1)−m(m + 1)} . (7.142)

so that we obtain the distance function as

d̃(m + 1, m) =
rj

2
∑l [P2

l (m + 1) + P2
l (m)]√

∑l [P2
l (m + 1)s1 + P2

l (m)s2 + Pl(m + 1)Pl(m)s3]
, (7.143)
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where s1, s2.s3 are given in the above equation (7.142) Clearly, the distance depends upon the

probabilities which shows the connection between geometry and statistics. Proceeding in the

same way as [79], we can take two choices of probability distribution: one that minimize the

distance between two generalized points and another that maximize the local entropy, while

fixing the local average energy.

Let us consider the first choice. Since we have the infinitesimal distance between the mixed

states, we can define the distance between two generalized points ni and n f on Hj as

d̃(n f , ni) =
n f−1

∑
m=ni

d̃(m + 1, m). (7.144)

After long computation, we obtain that the probabilities that minimize the distance must

satisfy

∆ Pl = 2α, ∀ l, (7.145)

where

∆ =



a(ni) b(ni) 0 . .

b(ni) a(ni + 1) b(ni + 1) 0 .

0 . . . .

. . . . .

. 0 b(n f − 2) a(n f − 1) b(n f − 1)

. . 0 b(n f − 1) a(n f )


; (7.146)

Pl =



Pl(ni)

Pl(ni + 1)

.

.

Pl(n f − 1)

Pl(n f )


; α =



α(ni)

α(ni + 1)

.

.

α(n f − 1)

α(n f )


. (7.147)

Here, α(m) (m taking value from ni to n f − 1) are the Lagrange multipliers imposing the

constraints that the probabilities sum to 1 and the matrix elements of ∆ are given by

a(m) = rj[g(m) + g(m− 1)− {j(j + 1)−m2}{ f (m) + f (m− 1)}],
b(m) = −rj[{j(j + 1)−m(m + 1)} f (m)],
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with f (m) and g(m) given by

f (m) =
1
2

∑l [P2
l (m + 1) + P2

l (m)][
∑l [P2

l (m + 1) s1 + P2
l (m) s2 + Pl(m + 1)Pl(m) s3]

] 3
2

, (7.148)

g(m) =
1√

∑l [P2
l (m + 1) s1 + P2

l (m) s2 + Pl(m + 1)Pl(m) s3]
. (7.149)

From equation (7.145), we see that Pl is independent of l since both ∆ and α are independent

of l so that we get

n

∑
l=−n

Pl(m) = 1⇒ Pl(m) =
1

(2j + 1)
. (7.150)

Substituting this in the equation (7.143), we get the distance function as

d̃(m + 1, m) =
1√

(2j + 1)

rj√
3{j(j + 1)−m(m + 1)− 1

3}
. (7.151)

This distance differs from the true Connes infinitesimal distance just by a numerical factor

resulting from the use of the trace instead of operator norm.

Let us consider the second choice where we introduce a local entropy as

S(m) = ∑
l

Pl(m) log Pl(m), (7.152)

with the further condition that

∑
l

Pl(m)El = E(m) in addition to ∑
l

Pl(m) = 1 . (7.153)

After maximizing the local entropy, we get the following Maxwell-Boltzmann form:

Pl(m) =
e−β(m)El

∑l e−β(m)El
=

e−β(m)El

Z(β(m))
, (7.154)

where β(m) is the local inverse temperature introduced as a Lagrange multiplier imposing

the local energy constraint (7.153) and Z(β(m)) = ∑l e−β(m)El is the partition function.

If we take the local average energy and so the temperature to be independent of m, then

putting (7.154) in (7.143), we get the distance function as

d̃(m + 1, m) =

√
Z(2β)

Z(β)

rj√
3{j(j + 1)−m(m + 1)− 1

3}
. (7.155)

This clearly shows the connection between the distance and partition function describing the

statistical properties of a system with quantum states given by (7.138) in thermal equilibrium.
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However, in this case the distance decreases as the temperature increases since the value of

the factor
√

Z(2β)

Z(β)
lies within 0 to 1 and goes to 0 for T = 1

β → ∞.



8
C O N C L U S I O N

The issue of maximal localization of the physical Voros position basis on 3D Moyal space has

been studied in the first part of the thesis. Although, the Voros basis states are maximally

localized states on the 6D phase space, they are not maximally localized states on the 3D

configuration space unlike its 2D counterpart [38]. Besides, the Voros basis has an isotropic

structure, in the sense that the symplectic eigenvalues of the corresponding commutative

variance matrix yield the same pair of eigenvalues for three independent “modes”, which

are now essentially decoupled from each other.

We have also re-visited the issue of twisted symmetry on 3D Noncommutative Moyal

space in a completely operatorial framework using Hilbert-Schmidt operators to investi-

gate whether the twisted bosons/fermions [26] necessarily occurs in conjunction with the

twisted deformed coproduct on Moyal space [23], where the twisted fermions were shown

to violate Pauli principle [27]. Further, even within this scheme, we have shown that there

exists a basis in the multi-particle sector called “quasi-commutative basis” which satisfies

orthonormality and completeness relation and is symmetric/antisymmetric under the usual

i.e. un-deformed exchange operator so that one has usual bosons/fermions and can avoid

introducing twisted bosons/fermions. The correlation functions and the associated thermal

effective potential is then shown to conform to Pauli principle, apart from preserving the

SO(3) symmetry, both in Moyal and Voros basis, in contrast to the case of twisted boson-

s/fermions, where there is a SO(3) → SO(2) symmetry breaking. In all these cases, the

resulting expressions in Moyal and Voros bases exhibit the same structural form, except that

in the Voros case, one gets a θ-deformed thermal wavelength ensuring that it has a non-

vanishing lower bound, which is in conformity with the requirement that wavelengths .
√

θ

are suppressed exponentially. Thus, in Voros basis one gets a non-commutative deformation

even in the quasi-commutative basis and this Voros basis should be regarded as physical

as one can talk sensibly about the inter-particle separation, as one can introduce spectral

distance a la Connes, unlike its “ Moyalian” counterpart [79].

In the second part of the thesis, we have provided a general algorithm to compute the finite

spectral distance on non-commutative spaces viz Moyal plane and fuzzy sphere, adaptable

with the Hilbert-Schmidt operator formulation of noncommutative quantum mechanics. We

have extensively studied the geometry of the Moyal plane (R2
∗) and that of the Fuzzy sphere

(S2
∗) using both the mentioned general algorithm and also emulated the method of [77]
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to compute the upper bound and then look for an optimal element saturating this upper

bound. In the case of the Moyal plane, we succeed in identifying such optimal element ‘as’

belonging to the multiplier algebra. We then constructed a sequence of projection operators

πN(as) in the finite dimensional subspace spanned by eigen-spinors of the Dirac operator

that converge to π(as) and saturates the upper bound, allowing us to identify the upper

bound itself with the distance. Eventually, this enables us to relate the one parameter family

of pure states to the geodesic of the Moyal plane which is nothing but the straight line.

In contrast, on the fuzzy sphere, although an analogous upper bound can be constructed

for any finite j-representation of su(2), there simply does not exist an optimal element as

saturating the inequality. Indeed, for the case of extremal non-commutativity j = 1
2 , the finite

distance turns out to be half the chordial distance. Here, except for the extremal points, the

interpolating “points" correspond to mixed states. This in turn helps us to find the distance

between a given mixed state and a uniquely defined nearest pure state lying on the “surface"

of S2
∗. The corresponding distance can then be taken as an alternative characterization of the

“mixedness" of a state. This exercise shows that in Connes’ framework no discrimination

is made between pure and mixed states; it scans through the entire set of pure and mixed

states to compute the supremum in (1.25).

All these calculations are enormously simplified by working in the eigen-spinor basis of

the respective Dirac operator so that we are able to compute the distance in the ‘j = 1’ fuzzy

sphere, using this revised algorithm. Since this algorithm involves also the transverse ∆ρ⊥
components in addition to the longitudinal ∆ρ component, this becomes somewhat less user-

friendly. For the ‘j = 1’ case, for example, it involves a minimization in seven parameters.

Needless to say that we have to make use of Mathematica after solving the quadratic char-

acteristic equation. For higher j’s, the corresponding characteristic equations will not only

involve higher degree polynomials, it will also involve a very large number of independent

parameters to be varied. Consequently, the computation for the j > 1 fuzzy sphere, even

with the help of Mathematica, remains virtually intractable and for the Moyal plane the num-

ber of parameters is simply infinite! To put our findings in a nutshell, we observe that the

finite distance for j = 1 and that of j = 1
2 have almost the same functional form except for an

overall scaling by a factor of
√

2 and a miniscule deformation at small ‘θ’ and that too only

from the sixth decimal onwards.

Moreover, we have computed the infinitesimal spectral distance between a pair of discrete

mixed states on the quantum Hilbert space of fuzzy sphere using the lower bound formula

(6.28). Just like the Moyal plane case [79], we find a deep connection between the geometry

of the quantum Hilbert space and the statistical properties of the quantum system associated

with the fuzzy sphere.



Part III

Appendices
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B A S I C T H E O RY O F H O P F A L G E B R A

a.1 algebra [115]

A unital algebra A is a vector space over a field K with the following maps:

1. the multiplication map m : A⊗ A → A (the product) which is associative in the sense

(ab)c = a(bc), ∀ a, b, c ∈ A. Note that m(a⊗ b) = ab.

2. the map η : K → A (the unit) such that η(1) = IA, where IA is the unit element of A

which satisfies aIA = aIAa, ∀ a ∈ A.

a.2 co-algebra [115]

A co-algebra C is a vector space over the field K with the following maps:

1. the map ∆ : C → C⊗ C (the co-product) which is co-associative in the sense

∑ c(1)(1) ⊗ c(1)(2) ⊗ c(2) = ∑ c(1) ⊗ c(2)(1) ⊗ c(2)(2), ∀ c ∈ C. (A.1)

Note that we have used the notation ∆c ≡ ∑ c(1) ⊗ c(2) in the above equation (A.1).

2. the map ε : C → K (the co-unit) obeying ∑ ε(c(1))c(2) = c = ∑ c(1)ε(c(2)), ∀ c ∈ C.

a.3 bi-algebra [115]

A bi-algebra H is both a unital algebra H with the maps m and η and a co-algebra H with

the co-product ∆ and the co-unit ε where H ⊗ H has the tensor product algebra structure

(h⊗ g)(h′ ⊗ g′) = hh′ ⊗ gg′, h, h′, g, g′ ∈ H.

a.4 hopf algebra [115]

A Hopf algebra H is a bi-algebra H i.e., it satisfies the properties of both algebra and co-

algebra with the algebra maps: product m and co-product ∆; and the unit map η and the
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co-unit ε with an additional map S : H → H, called the antipode such that ∑(Sh(1))h(2) =

ε(h) = ∑ h(1)Sh(2), ∀ h ∈ H.

The definition of a Hopf algebra can be summarized by the commutativity of the diagram:

H ⊗H H ⊗H
S ⊗ id

H H

m∆

K
ε η

H ⊗HH ⊗H id⊗ S

m∆

Figure A.1: Commutative diagram showing the axioms on the bi-algebra H that make it Hopf algebra.

a.4.1 Co-commutative

A Hopf algebra H is commutative if it is commutative as an algebra and co-commutative if

it is co-commutative as a co-algebra i.e. if Σ ◦ ∆ = ∆ where Σ : H ⊗ H → H ⊗ H is the flip

map, Σ(h⊗ g) = g⊗ h, ∀ h, g ∈ H.

a.4.2 Almost Co-commutative

A Hopf algebra H is said to be almost cocommutative if there exists an invertible element

R ∈ H⊗H such that Σ ◦ ∆ = R∆R−1.

a.4.3 Quasi-triangular

An almost cocommutative Hopf algebra H is said to be quasi-triangular if

(∆⊗ id)R = R13R23 and (id⊗ ∆)R = R13R12 (A.2)

where the product is in H⊗H⊗H; and R12 = Rα⊗Rα⊗ 1, R13 = Rα⊗ 1⊗Rα and R23 =

1⊗Rα ⊗Rα (denoting R = ∑αRα ⊗Rα ∈ H⊗ H) are the embedding of R in higher tensor

powers of H. This element R is called quasi-triangular structure or universal R-matrix.

Additionally, ifR21 = R−1, H is said to be triangular. Every co-commutative Hopf algebra

is trivially triangular with R = 1⊗ 1.
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a.4.4 Twisted Hopf algebra

Given a co-commutative Hopf algebra (H, µ, η, ∆, ε, S), an invertible element F ∈ H ⊗ H is

said to be a twist (Drinfel’d twist) if it satisfies the following conditions:

(1⊗F )(id⊗ ∆)F = (F ⊗ 1)(∆⊗ id)F → co-cycle condition; (A.3)

(ε⊗ id)F = 1 = (id⊗ ε)F . (A.4)

Further, if we have an invertible element of H as

χ = m(id⊗ S)F with χ−1 = m(S⊗ id)F−1, (A.5)

then the twist element F determines a new Hopf algebra structure on H with twisted co-

product ∆F and twisted antipode SF defined respectively as

∆F = F∆F−1 and SF = χSχ−1.

This resulting Hopf algebra is called a twisted Hopf algebra, HF with the same underlying

algebra structure µF = µ and counit εF = ε as H but with twisted co-product ∆F and twisted

anti-pode SF . It can be shown that HF or (HF , m, η, ∆F , ε, SF ) is a triangular Hopf algebra

with universal R-matrix given by R = F21F−1 which satisfies the quantum Yang-Baxter

equation:

R12R13R23 = R23R13R12. (A.6)

This twisted or deformed Hopf algebra HF is usually called the Quantum group. The con-

cept of quantum group is important in non-commutative spaces because it serves as a proper

mathematical structure to capture the properties of symmetry in noncommutative spaces.



B
R O B E RT S O N A N D S C H R Ö D I N G E R U N C E RTA I N T Y R E L AT I O N S

The Schrödinger Uncertainty relation represents the most generalized form of uncertainty

relation. It can be shown in the following:

The variance ∆Â2 of any Hermitian operator Â in a state |Ψ〉 can be written as

∆Â2 = 〈Ψ|(Â− 〈Â〉)2|Ψ〉 = 〈 fA| fA〉 , where | fA〉 = |(Â− 〈Â〉)Ψ〉. (B.1)

Using the Schwarz inequality for a pair of such observables Â and B̂, we have

∆Â2∆B̂2 = 〈 fA| fA〉〈 fB| fB〉 ≥ |〈 fA| fB〉|2. (B.2)

We can then split 〈 fA| fA〉〈 fB| fB〉 ≥ |〈 fA| fB〉|2 into real and imaginary terms as

|〈 fA| fB〉|2 =

( 〈 fA| fB〉+ 〈 fB| fA〉
2

)2

+

( 〈 fA| fB〉 − 〈 fB| fA〉
2i

)2

. (B.3)

Using the fact that 〈 fA| fB〉 = 〈ÂB̂〉 − 〈Â〉〈B̂〉 we see that

〈 fA| fB〉 − 〈 fB| fA〉 = 〈[Â, B̂]〉 and 〈 fA| fB〉+ 〈 fB| fA〉 = 〈{Â, B̂}〉 − 2〈Â〉〈B̂〉. (B.4)

Robertson Uncertainty Relation

Ignoring the square of real part in (B.3), i.e.

|〈 fA| fB〉|2 ≥ (Im.〈 fA| fB〉)2 =

( 〈 fA| fB〉 − 〈 fB| fA〉
2i

)2

, (B.5)

we get the Robertson Uncertainty Relation:

∆Â∆B̂ ≥ 1
2i
〈[Â, B̂]〉. (B.6)
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Schrödinger Uncertainty Relation

If we retain both the squares of real and imaginary parts of (B.3), i.e.

|〈 fA| fB〉|2 =

(
1
2
〈{Â, B̂}〉 − 〈Â〉〈B̂〉

)2

+

(
1
2i
〈[Â, B̂]〉

)2

; using B.3 and B.4 (B.7)

we finally get the Schrödinger Uncertainty Relation:

∆Â∆B̂ ≥
√(

1
2
〈{Â, B̂}〉 − 〈Â〉〈B̂〉

)2

+

(
1
2i
〈[Â, B̂]〉

)2

. (B.8)



C
S O M E D E F I N I T I O N S

c.1 C∗ -algebra [113 , 116]

A complex vector space A equipped with a multiplication map f : A × A → A such that

∀ f , g ∈ A, f × g ∈ A is called an algebra. Suppose we can define an anti-linear mapping

∗ : A → A called an involution or adjoint operation such that the following properties are

satisfied:

1. ∀ f ∈ A , f ∗∗ = f ;

2. ∀ f , g ∈ A , ( f × g)∗ = g∗ × f ∗ ;

3. ∀ f , g ∈ A and a , b ∈ C, (a f + b g)∗ = ā f ∗ + b̄ g∗ ;

then A is called a ∗-algebra or an involutive algebra. If ∀ f ∈ A, we can associate a real

number ‖ f ‖ called the norm of f such that ∀ f , g ∈ X and c ∈ C

1. ‖ f ‖ ≥ 0 and ‖ f ‖ = 0 if and only if f = 0,

2. ‖c f ‖ = |c |‖ f ‖,

3. ‖ f + g‖ ≤ ‖ f ‖ + ‖g‖, (triangle inequality)

4. ‖ f × g‖ ≤ ‖ f ‖‖g‖, (product inequality or Cauchy-Schwarz inequality),

then A is called a normed or Banach algebra. An involutive as well as normed algebra is

called a Banach ∗-algebra.

A C∗-algebra is a Banach ∗-algebra with the property, called C∗-identity:

‖ f ∗ × f ‖ = ‖ f ‖2 , ∀ f ∈ A . (C.1)

For example, given a Hilbert space H, the set B (H) of all bounded operators on H is a

C∗-algebra with the adjoint operation and operator norm:

‖A‖ = sup{‖Aψ‖ ; ψ ∈ H , ‖ψ‖ = 1} , (C.2)

which satisfies the C∗-norm property: ‖A∗ × A‖ = ‖A‖2.

128



C.2 ∗-homomorphism and functional of C∗ -algebra 129

A C∗-algebra A is a unital if it has an identity element 1, i.e. f = 1× f = f × 1, ∀ f ∈ A.

Otherwise, it is called non-unital C∗-algebra. A commutative unital C∗-algebra is the one

with f × g = g × f , ∀ f , g ∈ A. An element f of a unital C∗-algebra A is said to be normal

iff f × f ∗ = f ∗ × f ; self-adjoint iff f = f ∗ ; unitary iff f × f ∗ = f ∗ × f = 1; projection iff

f = f ∗ = f 2; positive iff f = g × g∗ for some g ∈ A; and invertible iff ∃ g ∈ A such that

f × g = g × f = 1. The resolvent set RA ( f ) of an element f ∈ A is defined as the set of

r ∈ C such that r1− f is invertible. The spectrum ΣA ( f ) of f is defined as the complement

of RA ( f ) in C. And the inverse (r1 − f )−1 where r ∈ RA ( f ) is called the resolvent of f

at r.

c.2 ∗-homomorphism and functional of C∗ -algebra

Given a pair of C∗-algebras A and B , an algebra homomorphism φ : A → B is called a ∗-

homomorphism if φ( f ∗ ) = φ( f )∗ , ∀ f ∈ A. A linear functional on A is a linear mapping

ω : A → C and the space of all continuous linear functionals is called the dual A ′ of A.

1. Character: A non-zero ∗-homomorphism µ : A → C, i.e., µ( f )µ(g) = µ( f ×
g) , ∀ f , g ∈ A ; µ( f ∗ ) = µ( f )∗ µ( f ) 6= 0, ∀ f ∈ A. The set of all characters

of A is called the character space of A and is a subset of A ′ , denoted by M(A) . The

characters of commutative unital C∗-algebra A = C(X ), the algebra of all continuous

functions on a compact set X are the evaluations µx ( f ) = f (x) , ∀ x ∈ X. The char-

acters of the algebra AD
n of n × n diagonal matrices are the maps µm : a → amm , 1 ≤

m ≤ n , ∀ a ∈ AD
n .

2. State: A positive and normalized linear functional, i.e. ω : A → C with ω ( f ∗ × f ) ≥
0 , ∀ f ∈ A and ‖ω‖ = 1. If ω1 and ω2 are the states over A and 0 < t < 1, then

ω = tω1 + (1 − t)ω2 is also a state. Thus, the space of all states S (A) over A form

a convex subset of the dual A ′ . The extremal elements of S (A) are called the pure

states of A and so they cannot be expressed in terms of states ω1 and ω2. The set of

pure states is denoted by P (A).

Since the characters of a C∗-algebra A are the algebraic ∗-homomorphisms, the existence of

(r1− f )−1 implies that of (r1− µ( f ))−1 , ∀ f ∈ A and hence for all µ ∈ M(A) , µ( f ) ∈
Σ( f ) with |µ( f ) | ≤ ‖ f ‖. For a commutative unital C∗-algebra A, the character space

M(A) is identified with the spectrum Σ(A). Moreover, µ( f ∗ × f ) = µ( f ∗ )µ( f ) =

|µ( f ) |2 ≥ 0 and µ(1) = 1 so that every character is a state. Suppose µ = αµ1 + (1 − α)µ2

(0 ≤ α ≤ 1) with µ1 ( f ) > µ2 ( f ) for some f > 0 such that µ( f ) = cµ1 ( f ) with c < 1,

then we have

αµ1 ( f n ) ≤ µ( f n ) = µ( f )n = cn (µ1 ( f ))n ≤ cn µ1 ( f n ) , ∀ n ⇒ α = 0. (C.3)
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Thus, M(A) contains all pure states. As a subset of the dual A ′ of the commutative uni-

tal C∗-algebra A, the character space can be topologized through restriction of any of the

topologies of A ′ .

c.3 representations of a C∗ -algebra

A representation π of a C∗-algebra A on a Hilbert space H is a ∗-homomorphism from A
into B (H), the algebra of bounded operators on a Hilbert space H. That is, ∀ a i ∈ A , λ i ∈
C, we have

π (λ1 a1 + λ2 a2 ) = λ1 π (a1 ) + λ2 π (a2 ) ; π (a1 a2 ) = π (a1 )π (a2 ) ; π (a∗i ) = π (a i )
∗ . (C.4)

If π (a) 6= 0 whenever a 6= 0 or, kerπ = {0} then the representation π is called faith-

ful. Each representation π a C∗-algebra A defines a faithful representation on the quotient

algebra Aπ = A/kerπ . For any C∗-algebra A, the range Bπ = {π (a) ; a ∈ A} of repre-

sentation π on H is a C∗-subalgebra of B (H). Let M be a C∗-subalgebra of B (H) and T
be a subspace of H such that MT ⊂ T , then T is called an invariant subspace of H. Let

M = Bπ such that H has no non-trivial invariant sunbspaces, then the representation π is

called an irreducible.

In any representation π of A on H, every vector ψ ∈ H with ‖ψ‖ =
√
〈ψ |ψ〉 = 1

produces a state ωψ (a) = 〈ψ |π (a) |ψ〉 , ∀ a ∈ A called vector state of A. The vector state

corresponding to an irreducible representation is always a pure state.

c.4 hilbert-schimdt operators

For a separable infinite dimensional Hilbert space H, if L ⊂ B (H) denotes a space of oper-

ators of finite rank i.e. an a ∈ L maps H to a finite-dimensional space, then the completion

of L in the norms:

1. ‖a‖1 = Tr( |a |) , |a | =
√

a∗ a, is denoted by L1 and such operators are called trace-

class operators;

2. ‖a‖2
2 = Tr(a∗ a) is denoted by L2 and such operators are called Hilbert-Schimdt oper-

ators;

3. ‖a‖∞ = ‖a‖ is denoted by K and such operators are called compact operators.

For example, diagonal matrices with eigenvalues α i belong to

1. L1 provided that ∑ i |α i | < ∞;

2. L2 provided that ∑ i |α i |2 < ∞;

3. K provided that lim i→∞ α i = 0.
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With this, we have the following inclusions:

L ⊂ L1 ⊂ L2 ⊂ K ⊂ B (H) . (C.5)

If the dimension of the underlying Hilbert space H is finite, say n i.e., B(H) ' B(Cn), then

all linear functionals on B(Cn) are of the form:

ω(a) = Tr(ρa) ≡ (ρ|a) , ∀ a ∈ B(Cn) where ρ ∈
(
B(Cn)

)′ ≡ B(Cn). (C.6)

c.5 normal state

If the dimension of the underlying Hilbert space H is infinite, then the dual of L is L1

and that of L1 is B(H) such that all trace-class operators provide linear functionals on the

bounded operators by a 7→ Tr(ρa), a ∈ B(H), ρ ∈ L1 [113]. Note that a Hermitian trace-class

operator ρ = ρ∗ such that ρ ≥ 0 and Tr(ρ) = 1 is called a density operator. The positive

and normalized linear functionals provided by density operators ρ ∈ L1 on B(H) are called

normal states and they are given by

ωρ(a) = Tr(ρa) , a ∈ B(H). (C.7)

If the density matrix ρ is one-dimensional projection such that ρ2 = ρ, then the corresponding

normal state is pure. Otherwise, it is a mixed state.

c.6 module

A left module M over an algebra A (or, left A-module) is an abelian group M together with

the scalar multiplication A×M→ M i.e. (a, u) 7→ au such that

a(u + v) = au + av ; (a + b)u = au + av ; a(bu) = (ab)u , ∀ a, b ∈ A, u, v ∈ M. (C.8)

Similarly, we can define the right module M over B (or, right B-module) as the abelian

group M with the scalar multiplication M × B → M i.e. (u, a) 7→ ua satisfying the similar

conditions:

(u + v)a = ua + va ; u(a + b) = ua + va ; (ua)b = u(ab) , ∀ a, b ∈ B, u, v ∈ M. (C.9)

Given two algebras A and B, an abelian group M with the scalar multplications A×M→ M

and M× B→ M satisfying (C.8) and (C.9) with the compatibility condition: a(ub) = (au)b =

aub is called a (A, B)-module. If A = B, then the (A, A)-module is called a bi-module.
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A module M over A is a free module if there exists a linearly independent generating set

E which form a basis for M. That is, ∀ m ∈ M, ∃ ei ∈ E ⊆ M, ai ∈ A such that m = ∑n
i=1 aiei

where ∑n
i=1 aiei = 0m ⇒ a1 = a2 = .. = an = 0A. Every vector space is a free module.

A module M over A is a finitely generated if there exists a generating set { f1, f2, .., fn}, fi ∈
M such that ∀ m ∈ M, ∃ a1, a2, .., an ∈ A with m = ∑n

i=1 ai fi. Here, { f1, f2, .., fn}, fi ∈ M may

not be linearly independent.

A module M over A is a projective if there exists a set {m1, m2, .., mn}, mi ∈ M and another

set { fi =∈ Hom(M, A)} such that ∀ m ∈ M, fi(m) is only nonzero for finitely many i ∈ I
and m = ∑ fi(m)ai, ai ∈ A. Or, a module M over A is a projective if and only if there is a

free module F and another module N such that F = M⊕ N.

If A is a unital C∗-algebra and p is a projection in EndA(An), i.e. p2 = p =


p11 .... p1s

.. .... ..

.. .... ..

ps1 .... pss

 , pij ∈

A, then E = pAn is a finitely generated projective right A-module. Further, E is a pre-

Hilbert A-module with A-valued inner product: 〈u|v〉 = ∑n
i=1 u∗i vi, u, v ∈ E .

If M is a differentiable manifold and we have a vector bundle E π−→ M with the space of

sections Γ(M, E) ≡ Γ(E) = {s : M → E : π ◦ s = IdM}, then Γ(E) is finitely generated

projective right module over A = C∞(M) with s ◦ f ∈ Γ(E), ∀ f ∈ A defined as (s ◦ f )(x) =

s(x) f (x), ∀ x ∈ M.



D
C O N S T R U C T I O N O F D I R A C O P E R AT O R S

Here we will review the construction of Dirac operator DM on Moyal plane and D f on fuzzy

sphere. Dirac operator is one of the major ingredients of a spectral triple and plays the most

important role in the computation of spectral distance.

d.1 moyal plane

The Moyal plane R2
? is the quantization of Euclidean plane R2 and we know that for the

latter R2 the Dirac operator is

D = −i(σ1∂1 + σ2∂2) , where σ1, σ2 are the first two Pauli matrices. (D.1)

For Moyal plane where [x̂α, x̂β] = iθεαβ ; α, β = 1, 2, we can define an analogous operator

∂α → ∂̂α’s only through the momentum operator P̂α acting adjointly on Hq with the non-

commutative Heisenberg algebra (2.5). Since it is only the quantum Hilbert space Hq that

furnish a complete representation of the entire Heisenberg algebra we need to construct our

Dirac operator on this space. Thus, we can construct the Dirac operator for Moyal plane as

DM ≡ σαP̂α = σ1P̂1 + σ2P̂2 , acting adjointly on Φ =

|φ1)

|φ2)

 ∈ Hq ⊗C2 . (D.2)

Using (2.10), we get DMΦ =
√

2
θ

 [ib̂†, φ2]

[−ib̂, φ1]

. Let us define a diagonal representation π of

a ∈ Hq as π(a) =

a 0

0 a

 and its action on the same Φ ∈ Hq ⊗C2 as

π(a)Φ =

a 0

0 a

|φ1)

|φ2)

 =

a|φ1)

a|φ2)

 , (D.3)

133



D.2 fuzzy sphere [88] 134

such that the action of the commutator [DM, π(a)] on Φ gives

[DM, π(a)]Φ =

√
2
θ

 0 [ib̂†, a]

[−ib̂, a] 0

Φ ⇒ [DM, π(a)] ≡
√

2
θ

 0 [ib̂†, a]

[−ib̂, a] 0

 . (D.4)

Since b̂/b̂† and a ∈ Hq are the operators acting on Hc and the diagonal action π(a) =a 0

0 a

 on Hq⊗C2 can be understood as a diagonal representation π(a) acting on Hc⊗C2,

the commutator [DM, π(a)] thus yields the following form of Dirac operator acting on Hc ⊗
C2:

DM =

√
2
θ

 0 ib̂†

−ib̂ 0

 . (D.5)

This is further simplified by considering the transformations b̂ → ib̂ and b̂† → −ib̂†, which

just corresponds to a SO(2) rotation by an angle π
2 in x̂1, x̂2 space. With this transformation

the Dirac operator takes the following hermitian form :

DM =

√
2
θ

0 b̂†

b̂ 0

 . (D.6)

Clearly, this Dirac operator DM has a well-defined left action on Ψ =

|ψ1〉
|ψ2〉

 ∈ Hc ⊗C2:

DΨ =

√
2
θ

0 b†

b 0

|ψ1〉
|ψ2〉

 =

√
2
θ

b† |ψ2〉
b |ψ1〉

 . (D.7)

d.2 fuzzy sphere [88]

The construction of Dirac operator for fuzzy sphere can be understood by first understanding

the construction of Dirac operator for 3-sphere and hence for 2-sphere. Here, we provide a

review of the same by essentially following [88].

d.2.1 Dirac operator on S3 and S2

Let us consider a flat C2
0 manifold, isomorphic to R4 − {0} which can be defined as

C2
0 =

{
χ =

χ1

χ2

 ∈ C2 : χ†χ > 0

}
. (D.8)
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With the imposition of the constraint χ†χ = |χ1|2 + |χ2|2 = 1 on (D.8), we get the 3-sphere

S3 which is the SU(2) group manifold [117]. Note that Hopf has shown that S3 is a U(1)

bundle over S2 [118]. This can be easily seen by making use of the U(1) freedom χ → eiαχ

(for arbitrary α) in (D.8). That is, we can choose α such that either χ∗ = χ1 or χ∗2 = χ2 in local

neighborhoods giving either χ†χ = χ2
1 + |χ2|2 = 1 or, χ†χ = |χ1|2 + χ2

2 = 1 which is clearly

S2. Now, we know that a CP1 manifold is defined as

CP1 =

{
χ =

χ1

χ2

 ≈ λχ ∈ C2 : λ 6= 0 ∈ C
}

. (D.9)

This implies that by first normalising i.e. setting χ†χ = 1 and then choosing a suitable section

from the U(1) bundle over S2, we can identify SU(2)/U(1) ' S2 ' CP1. This can be obtained

in two ways which we can be explained clearly by choosing a standard parametrization of

S3.

Let θ, φ, ψ be the three Euler angles on S3 which have the following identification with the

complex doublets of C2
0 manifold (D.8):

S3 =

{
χ =

χ1

χ2

 =

 cos
(

θ
2

)
e

i
2 (φ+ψ)

sin
(

θ
2

)
e−

i
2 (φ−ψ)

 ∈ C2 : χ†χ =|χ1|2+|χ2|2 = 1

}
. (D.10)

Let us choose the following two charts:

1. U+ =
{

χ ∈ S3 : χ∗1 = χ1
}

in the neighbourhood χ1 6= 0 by setting ψ = −φ

χ =

χ1

χ2

 7→ χ′ =

χ′1

χ′2

 =

cos
(

θ
2

)
sin
(

θ
2

)
eiφ

 ; (D.11)

2. U− =
{

χ ∈ S3 : χ∗2 = χ2
}

in the neighbourhood χ2 6= 0 by setting ψ = φ

χ =

χ1

χ2

 7→ χ′′ =

χ′′1

χ′′2

 =

cos
(

θ
2

)
e−iφ

sin
(

θ
2

)
 . (D.12)

Clearly, χ′ and χ′′ can be interpreted as the local coordinates of S2 on the northern hemi-

sphere V+ and southern hemisphere V− respectively (which can be expressed as familiar

coordinates x1 = sin
(

θ
2

)
cos φ, x2 = sin

(
θ
2

)
sin φ and x3 = cos

(
θ
2

)
of S2). On the overlap

region V+
⋂

V−, we have the transition function as

χ′ = eiϕχ′′ . (D.13)



D.2 fuzzy sphere [88] 136

Let us now consider the spinor bundle S(C2
0) over C2

0 manifold, which is actually a trivial

one. The sections of S(C2
0) have the following form in terms of homogeneous coordinates χ1

and χ2:

Ψ(χ, χ∗) =

Ψ1(χ, χ∗)

Ψ2(χ, χ∗)

 ; Ψα = ∑
n1,n2,m1,m2

aα
n1,n2,m1,m2

χ∗n1
1 χ∗n2

2 χm1
1 χm2

2 ; α = 1, 2. (D.14)

Here, n1, n2, m1, m2 ∈ Z. The sections of the spinor bundle S(S3) over S3 can be easily ob-

tained from the sections of S(C2
0) (D.14) by putting the constraint χ†χ = 1. The spinor

bundle S(S3) persists to be a trivial one. In terms of the Euler angles (D.10), we can write the

sections (D.14) as

Ψα = ∑
n1,n2,m1,m2

aα
n1,n2,m1,m2

(
cos

θ

2

)n1+m1(
sin

θ

2

)n2+m2
e−i φ

2 (m1−m2−n1+n2)e−ik ψ
2 , (D.15)

where

k = (m1 + m2 − n1 − n2) ∈ Z . (D.16)

The sections of S(C2
0) and S(S3) have a natural grading where the subbundles Sk(C2

0) and

Sk(S
3) are formed by sections of the form (D.15) with fixed k.

The differential operators acting on sections of S(C2
0) are

Ji =
1
2
(χασ

βα
i ∂χβ

− χ∗α(σ
∗)βα

i ∂χ∗β) and K =
1
2
(χα∂χα − χ∗α∂χ∗α) . (D.17)

The actions of differential operators (D.17) on sections of S3 remains unchanged. The differ-

ential operators Ji satisfy the su(2) algebra: [Ji, Jj] = iεijk Jk and can be identified with the

orbital angular momenta. The sections of Sk(C
2
0) or, Sk(S

3) are eigenstates of the dilatation

operator K:

KΨ = kΨ , Ψ ∈ Sk(C
2
0) or, Sk(S

3). (D.18)

In terms of the Euler angles (D.10), these differential operators (D.17) have the following

form:

J1 = i sin ϕ
∂

∂θ
+ i cos φ cot θ

∂

∂φ
− i

cos φ

sin θ

∂

∂ψ
,

J2 = −i cos φ
∂

∂θ
+ i cot θ sin φ

∂

∂φ
− i

sin φ

sin θ

∂

∂ψ
,

J3 = −i
∂

∂φ
,

K = i
∂

∂ψ
. (D.19)
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The sections of Sk(C
2
0) or, Sk(S

3) are modules with respect to multiplication by elements of

the algebra A0, formed by functions of the form:

f (χ, χ∗) = ∑
n1,n2,m1,m2

aα
n1,n2,m1,m2

χ∗n1
1 χ∗n2

2 χm1
1 χm2

2 with k = 0⇒ n1 + n2 = m1 + m2 . (D.20)

Since χ†χ = 1 and we have the Hopf map S3 → S2:

xi = χ†σiχ ; i = 1, 2, 3 , (D.21)

satisfying ~x2 = xixi = 1. Note that the algebra of A0 is isomorphic to the algebra of functions

C(S2) on S2. Further, note that the Jordan-Schwinger map (2.59) is the operatorial version of

this Hopf map (D.21).

The sections of spinor bundle S(S2) have the following form:

Ψ′(χ′, χ′∗) =

ψ′1(χ
′, χ′∗)

ψ′2(χ
′, χ′∗)

 on V+ ; Ψ′′(χ′′, χ′′∗) =

ψ′′1 (χ
′′, χ′′∗)

ψ′′2 (χ
′′, χ′′∗)

 on V− . (D.22)

On the overlap region V+
⋂

V−, we have the relation:

Ψ′(χ′, χ′∗) = eikφ Ψ′′(χ′′, χ′′∗) , (D.23)

up to a global phase factor eiδ. This k, which can be identified with the topological index

(Chern class), classifies the spinor bundles Sk(S
2) over S2 and the angle φ is given by (D.13).

Two sections Ψ0 and Ψ1 of Sk(S
2) are said to be equivalent if Ψ′0 = Ψ′1 , Ψ′′0 = eiδΨ′′1 . The

equivalence class Ψ̃ of a given section Ψ of Sk(S
2) can be represented as

Ψ̃′α(χ
′, χ′∗) = ∑

n1,n2,m1,m2

aα
n1,n2,m1,m2

χ′∗n1
1 χ′∗n2

2 χ′m1
1 χ′m2

2 on V+ ,

Ψ̃′′α(χ
′′, χ′′∗) = ∑

n1,n2,m1,m2

aα
n1,n2,m1,m2

χ′′∗n1
1 χ′′∗n2

2 χ′′m1
1 χ′′m2

2 on V− . (D.24)

Note that the coefficients aα
n1,n2,m1,m2

are the same in both charts V+ and V− with k = n1 +

n2 −m1 −m2 such that the following transition rule is satisfied:

Ψ̃′α(χ
′, χ′∗) = e−ikφ Ψ̃′′α(χ

′′, χ′′∗). (D.25)

Denoting the bundle formed by the sections of the form (D.24) as S̃k(S
2), we can see a one-to-

one mapping between the sections of S̃k(S
2) (D.24) and the sections of Sk(C

2
0) or, Sk(S

3) (D.14)

with the same coefficients aα
n1,n2,m1,m2

with k = n1 + n2 − m1 − m2. This gives the following

mapping of the section Ψ ∈ S(S3) to the section Ψ̃ ∈ S̃(S2):

Ψ̃′(χ′, χ′∗) = e
i
2 k(φ+ψ)Ψ(χ, χ∗) on V+ ,

Ψ̃′′(χ′′, χ′′∗) = e−
i
2 k(φ−ψ)Ψ̃α(χ, χ∗) on V− , (D.26)
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where the bundle S̃(S2) is defined as the direct Whitney sum : S̃(S2) = ⊕S̃k(S
2).

The free Dirac operator D̃k : S̃(S2)→ S̃(S2) is defined by

D̃′k = [iσ′α(∂′α + iA′α)] on V+ ; D̃′′k = [iσ′′α(∂′′α + iA′′α)] on V− ; α = 1, 2 > (D.27)

Here, ∂α denotes the derivative ∂θ , ∂φ in the local coordiantes θ and φ in V+
⋂

V− and

(∂α + iAα) represents covariant derivative. The σ’s (σθ and σφ) satisfies the following Clif-

ford algebra:

{σα, σβ} = 2gαβ , on V+

⋂
V− (D.28)

where {gαβ} =
1 0

0 1/ sin2 θ

 is the inverse of the metric tensor of the unit sphere S2(~x2 =

1) and Aµ is the k- monopole field given by [119]:

A′α = ikχ′†∂αχ′ on V+ ; A′′α = ikχ′′†∂αχ′′ on V−. (D.29)

The field A′α and A′′α in V+
⋂

V− are related by the gauge transformation

A′α = A′′α + k∂αφ ⇒ A′θ = A′′θ = 0 ; A′φ =
k
2
(cos θ − 1) ; A′′φ =

k
2
(cos θ + 1) , (D.30)

since on V+
⋂

V−, we have σθ =

 1 − cot θe−iφ

− cot θeiφ −1

 and σφ =

 0 −ie−iφ

ieiφ 0

. The

eigenvalue problem of the Dirac operator in S̃(S2):

D̃′kΨ̃′(χ′, χ′∗) = λΨ̃′(χ′, χ′∗) on V+ ; D̃′′k Ψ̃′′(χ′′, χ′′∗) = λΨ̃′′(χ′′, χ′′∗) on V− , (D.31)

is switched to a problem in Sk(S3) , DkΨ = λΨ , Ψ ∈ Sk(S3) where we use

Ψ = e−
i
2 k(φ+ψ)Ψ̃′ on V+ ; Ψ = e

i
2 k(φ−ψ)Ψ̃′′ on V− ; (D.32)

and Dk = e−
i
2 k(φ+ψ)D̃ke

i
2 k(φ+ψ) on V+ ; Dk = e

i
2 k(φ−ψ)D̃ke−

i
2 k(φ−ψ) on V−. (D.33)

On both V+ and V−, a straightforward computation shows that the Dirac operator on S3 with

radius r is given by

Dk =
1
r

σj(Jj −
k
2

xj

r
). . (D.34)

The Dirac operator on S2 with radius r can be obtained by putting k = 0 as

D0 =
1
r

σj Jj =
1
r
~J ⊗~σ . (D.35)
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d.2.2 Dirac operator on fuzzy sphere S2
?

We have the algebra A0 of functions on S2 which have the form:

A0 =

{
Φ = ∑

n1,n2,m1,m2

aα
n1,n2,m1,m2

χ∗n1
1 χ∗n2

2 χm1
1 χm2

2 : k = n1 + n2−m1−m2 = 0
}

. (D.36)

Note that this algebraA0 is analogous to the quantum Hilbert spaceHj (2.69) of fuzzy sphere

with radius rj = θ f
√

j(j + 1) which form an algebra:

Hj =
{

Φ̂ = ∑
n1,n2,m1,m2

aα
n1,n2,m1,m2

χ̂†n1
1 χ̂†n2

2 χ̂m1
1 χ̂m2

2 : k = n1 + n2 −m1 −m2 = 0
}

. (D.37)

The actions of angular mometum operators Ĵi and the dilatation operator K̂ on fuzzy sphere

can be obtained by replacing the derivatives in (D.17) with the following commutators:

∂χα Ψ ∼ [χ†
α, Ψ] ; ∂χ†

α
Ψ ∼ [χα, Ψ]. (D.38)

This gives the adjoint action of Ĵi and K̂ on the quantum Hilbert space Hj as

ĴiΦ =
1
θ f
[x̂i, Φ] ; K̂Φ = [N̂, Φ] = 0 , Φ ∈ Hj , (D.39)

since all elements of Hj are of the form Φ ∼ |j, m)(m′, j|. The action of Ĵi on the configuation

space Fj is given by

Ĵi|j, m〉 = 1
θ f

x̂i|j, m〉 , |j, m〉 ∈ Fj . (D.40)
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